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PORZWORD

This finsl r2port was prepared by the Structural Mechanics Section of the
Grumman Acrospace Corporation, Bethpage, New York, for the Vehicle Dynaaiecs and
Structures Division, Air Force Flight Dynamics Laboratory, Wright-Patterson Air
Force Base, Ohio. The work ras performed under Contract No. F33615-72-C-1101,
which vas initiated under Project No. 1370, "Dyuamic Problems in Flight Vehicles',
Task No. 01, "Aercelastic Problems". Ihitially Mr. R, P, Taylor (IYS) and
Dr. V. B. Venkayya (FBR) were the Project Monifors of this contract, after which
Capt. S. M. Batill (FYS) assumed this position.

The report consists of two volumes. Volume I,entitled "Theory and Applica-
tion",describes the analysis and redesign procedures provided by a computer pro-
gram system for minimum-weight design ci' cantilever or free-free lifting-surface

e
i.
L

) structures subject to coubined strength and flutter-speed requirements. Detailed P .1‘ :
F i i irnstructions required to use this Flutter And STrength Optimization Program , i
! . {FASTOP) are provided in Volume II, entitled "Program User's Manual", The . : .
< report, which covers weork conducted hetween 15 Mar_c_y 1972 and 31 December 19795, e
vas submitted to the Air Force in Decemter 1975. S

i Dr. W, lansing was the Program Manager and Mr., XK. Wilkinson was the i .

3 ) . Project Engineer. Principal contributors to the project and their essociated v Y

i ~ areas of responsibility include: Messrs. D. George and G. R, Schriro - »
Overall Program Integration and Final Checkout; Dr. J. Markowitz - Integration

] f ot Flutter Redesign and Strength Redesign Program Functions; Messrs. E.lerner

ard J, H, Berman - Evaluation of Candidate Flutter Pedesign Procedures; Messrs.

R. R, Chipman and M, Chernoff - Development of Integrated Flutter Analysis Module;

Dr, W. J, Dwyer - Strength Aralysis and HRedesign Module; Mr. P. Shyprykevich -

Applied Loads Analysis Module; Messrs. M. J. Shapiro and S. Goldenberg -

Vibration Analysis Module. The continued assistance and advice of Mr J., Smedfjeld

and Capt. S. M. Batill have buen greatly appreciated, The authors also wish to

acknowledge Mr., W, Mykytow and Dr. L. Berke for initiating this effort and for

their valuable suggestions during the course of the project.
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+ion 1
INTRODUCTION

In order to meet the increasingly restrictive budgetary and schedule
constraints imposed on aerospace vehicle development programs, considerable
sttention hes been devoted in recent years to automation of the aircraft
design process. This effort has largely focused on the refinement and inte-
gration of existing analysis tools (e.g., see References 1l-1 and 1-2). At
the same time, some significant advances have been made in the development
of automated redesign procedures as a further means of accelerating the
the design cycle (e.g., see Reference 1-3).

The computer program described in this report falls into both of these
categories. Its capabilities encompass integrated interdisciplinary anal-
ysis as well as enhanced automated redesign for aircraft lifting - surface
structures. The anaiysis capability includes loads prediection, structural
analysis, vibration mcde determination, and flutter enalysis. The redesign
procedure minimizes the weight of a lifting - surface structure in the
presence of combined strength and flutter-speed constraints. The entire
program is known as FASTOP, for Flutter And STrength Optimization Program.

Before describding the specific features of this program, it is valuable
to review some of the background and objectives which governed its devel-
opment.

The strength analysis and redesign module in FASTOP was developed
several years cgc under a contract sponsored by the Air Force Flight Dynamics
Laboratory. This program, known as ASOP (jutomated Structural Qptimization
JProgr:m), sutomatically resizes the gages of a finite-element structures
model to achieve a fully stressed {near-miniimm-weight) design for spec-
ified design load conditions. Prior to the advent of automated strength
resizing vrocedures, the stress analyst was faced with the time consuming
task of computing element stresses based on the results of a finite-element
analysis, and then manuslly resizing the preliminary gages of the structures
model. This proceas had to be repeated until an acceptable design was
acnieved. Consequently the automated resizing capability in ASOP has resulted
in a significant reduction in the time required for the strength design of
airplune structures.,
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The major objective in developing FASTOP has been to integrate the
aforementioned strength redesign program with a new automated procedure for
minimm-weight resizing to satisfy a flutter-speed constreint. This require-
ment originated from the obvious inefficiencles in existing flutter preven-

X
[ L I T o SRV - §

tion procedures, wherein the flutter analyst relies largely on judgement in

i vursuing an adequate flutter "fix". Such en approach often leads to many

|

trial and error studies which are particularly inefficient because of the non-
automated interface between -the {lutter analysis and structursl enelysis

procedures. That is, any stiffness change to be considered in the course of
a flutter investigation must be evaluated through manual changes to the input

data of the structural analysis program., New stiffness properties, vibraticn

modes, and & flutter speed are then computed on a step-by-step basis via

...»_.M,_.. -

individual computer programs, The time required for each of these tasks
and the number of "fixes" to be evaluvated obviously incresse in proportion
to the complexity of the structures model under investigation.

Automation of this interactive strength/{lutter redesign process has
been accomplished in FASTSP, pruviding the user with redesign capability
for small-or large-scale structures models. Moreover, the flutter radesign
procedure, which evolved from an extensive evaluation of candidate app-
roaches, has been demonstrated to achieve a minimun-weight redesign for
flutter-critical configurations. ® ®

This report describes the various analysis and resdesign procedures
included in FASTOP, Results obtained from the analysis snd resizing
of three gample structures are also presented. After first providintg
an overview of the entire FASTOP system, each of the major snalysis
and redesign functions 1s discussed in a separate section. It will
te noted that the depth of detsil varies 1in each of these sections,
Where adequate documentation of well-known methods already exists,
as, for example, in the discussion cf the structural enalysis methods,
considerable reliance is piaced on this documentstion, and the discussion
only sumarizes the procedures. On the other hsnd, ~ven though some
other techniques are already documented, it is felt thsd they may te

A mmt./.n« e n

less familiar to the reader and thei he would venefit fiom heving thea
discussed in detail and included in this volume for completeness,

In other instances, where the anulysis cepatility provided in & marti-
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’ cular discipline extends into areas beyond the original intended scope of
: this contract, as, for example, in the consideration of wirg-body aero-
dynamic interference and in the computation of divergence speed 1in the
) _ flutter analysis section, énly & brief discussion of these features is
A ineluded,
:
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Section 2
OVERVIEW OF THE ¥ASTOP SYSTEM

The FASTOP system provides capability for the anslysis and near-minimum-
s . weight structurul sizing of a lifting surface to meet strength and flutter-

: : speed requirements. A functional flow diagram of the system is presented in
Figure 2.1. The package 1s comprised of two major programs, each one designed
to perform succe::ive analysis and resizing functions in a single computer
submission. The jjtrength Qptimization Program (SOP) focuces on basic aspects .
of static structural analysis and minimum-weight design for strength require- f
ments. It provides for automated calculation of applied loads, performence .
of conventionel strength and flexibility (or stiffness) analysis, and autc-
mated resizing cf a structural idealization to achieve a fully stressed de-
sign,. It.also prepares data required for direct input to the second major
program. The Flutter Optimization Program (FOP) addresses dynamic analysis
requirements and provides the redesign capability for achieving a desired P
value of flutter speed with minimum cost in weight. Using output data trom
the first program, it proceeds to establish mass matrix input for vibration
mode -analysis, compute normal mode shapes and frequencies, determine the
suri:ce's critical flutter speed, and perform resizing if desired to in-
crease flutter speed. Finally, the second program saves data required for e ‘
re-entering SOP,

m A Rk e W cPm e

The use of this two-program approach for redesign proceeds as follows.
First, using SOP, the structure is sized to satisfy its strength requirements
with a fully stressed design. The structural elements after this step can be in
either of two categories - fully stressed {i.e., strength-critical) or at a x’ A
prespecified minimum gage (as dictated, for example, by manufacturing consid- ‘
erations). Then, using FOP, resizing of structural end/or mass-balance
variables is performed to increase the critical flutter speed of the surface.
No structural elements can be reduced in this step, since this would cause
them to fall below the gages previously required by SOP. The structural
variables that are increased in the second step, plus any mass-balance variables
that have been specified by the user, constitute an .nitial set of "flutter-

‘ critical” elements, i.e., elements whose sizes have been dictated by flutter-
speed requirements. The structural variables that have been increased by FOP ®
are now removed from the previous strength-criticel end minimum-gage categories.
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Figure 2.1. Functional Flow Diagram for the FASTOP System
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Since the resizing of certain structursl elements to achieve an increase
in flutter speed may alter the internal loed d{stributions and therefore the
resulting gage requirements for strength considerations, SOP is now re-
entered. This is the first step toward achieving a minimum-welght design
accounting for strength/flutter interaction. In tlis step, no flutter-critical
element, and of course no element at tue prascribed minimum gage, can be .
resized downward, but the renaining elements, which constitute the newly ﬁ'
defined set of strength-critical elements, ¢an be either decreased or increased.
Again, & reclassification of the various elements into strength-critical, !
flutter-critical, and minimum-gage categories takes place, For example, if e
a previously flutter-critical element is resized upward to meet strength ®
requirements, it is now moved into the strength-critical set; similarly, if
a previously strength-critical element cen be reduced in weight until it reaches
its prescribed minimun gage, it is now pit into the minimum-gage category.

At this point, FOP is entered for the second time, and the strength/
flutter interacﬁive redesign ~ontinues. The resizing that can take place in
this second pass through FOP is more flexitle than that which occurred the first
time, in that now there is a set of flutter-critical structural elements that
can be resjzed either upward or downward. Any downward resizing cannot violate
the values required by strength or minimum-gage considerations, however. As )
before, elements in the new sets of strength-critical and minimum-gage "
variables can only be resized upward, and if this occurs they are reclassified
as flutter-criticsl.

Subsequent. interactive aprplication of the two programs proceeds in
manner similar to the second passes until, in the opinion of the user, the
process is sufficiently converged. The final design will consist of a set of
flutter-criticel elements which have nearly uniform flutter-velocity derivatives,
a set of strength-critical elements which are fully stressed, and & set of
elements which are at the user prescribed minimum gages.

A.—Mwwwmm“w - -

While it is felt that the two-program approach provides the most logical
"stop points" needed by the user for appraisal of intermediate results and
possible revision of redesign step-size control rarameters, it is still possible
to use a multiple-step ortion to exercise the analysis and redesign functions
of both programs without interruption. It is also noted (as indicated in )
Figure 2.1) that prcvigion is made to exit either program after performing
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specific analysis or redesign functions, thereby affording the user the oppor-
tunity to monitor the results even more closely or, if he wishes, exercise
individual portions of the system independently. Finally, if a user observes
that flutter resizing occurs in a wery local area with only minor interaction
with strength requirements, the flutter resizing program can be used seversl
times in succession, using coupled-mode flutter analycus, before returning to
arother strengtih resizing step. In this situwation it is recommended, however,
thet SOP be uged in an analysis node to compute a new flexibility (or stiffness)
matrix for a new normal-mode caiculation after each resizing step; if coupled
modes are used, the accuracy of the flutter-velocity derivatives deteriorates
repidly, and improper r2sizing steps can result.

L

{
|
In both programs, considevable emphasis has been placed on the mcdular . r
programming concept, so that tha system's capability can readily be axtended
in the future. The analysis and redesign functions of both programs are
performed with the following six modules:

@

Applied lLoads

Structural Analysis and Resizing

Transformation Procadures .
Vibration Analysis (Including Mass Matrix Definition)
Flutter Analysis ® .
. Flutter Resizing - ‘

O

! The capabilities of the individual aneiysis and redesign routines are briefly
: surmerized below:

' Applied Loads

»
Aerodynamic l
Maximum nvmber of flight conditions
(subsonic and/or supersonic) 8 g
P
i

Maximum number of control surfaces 8

‘aximun number of serodynamic panels 100

Inert.al
Maximum number of flight conditions 8
Meximum number of distributed (point) masses 1000

PP

Maximum number of concentrated (wass and inertia) masses 1o ®
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Structural Analysis snd Resizing

Primarily for metallic structures (limited composites capability)
Maximum allowable number of finite elements

. Y Lt ’
) |
+ e, e T .

to define the structures model 3000
Meximum number of structures model node points 1000 i
‘Maximum number of structures model degrees
of freedom 6000*
“aximum number of applied load conditions 8 t
Vibration Analysis g
»

Maximum number of dynamics model degrees
of freedom 200

Flutter Analysis

Assumed-pressure~function and doublet-

lattice routines for subsonic flow M=O=e-0.9 ®
Mach-box routine for supersonic flow M=1.3+3.0
Maximum number of modes for flutter analysis 20
Maximum number of control surfaces on main
surface for doublet-lattice and Mach-box routines 5 » Y
Maximum number of aerodynamic panels: H
| Doublet-lattice 400
Mach-box 350
Flutter Resizing ®
_ Maximum number of elements which can =y
' be resized for flutter: T

Structural elements 2000 ;
Mass~balance elements 20
The following scctions describe <the theury and procedures ’
in each pregram module, Each section begins with a brief summary to enable
the reader to quickly grasp the intent of each analysis and to understand
its relationship to the overall system. )
#Reduces to 3000 if subsequent flutter resizing uses a free-free vibration ’.
model; unchanged for cantilever model.
8
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Section 3
APPLIED LQADS ANALYSIS

3.1 SUMMARY

The applied loads analysis module provides the capability for cempating
aercdynanic and inertial loeds for spe:ilied maneuver conditions. The aero-
dynamic forces are compmuted by modeling the 1licting surface with a distritution
of vortices for subsonic flow or with 2 distritution of sources for supersonic
flow. For f1ight conditions expressed in terms of vehicle load factors and
angular accelerations and velocities, inertial loads are computed at a grid.
work of concentrated and distributed mssses., The aerodynamic and inertial
forces are then transformed from thelr respective math models to the structures
model using transformations computed in a seperate transformation analysis
module degcribed in Section 5. FASTOP also provides the capability for the
direct input of xnmown loads in the structures model.

3.2 AERODYNAMIC LOADS

To obtain surface aerodynamic forces, the planform is subdivided into
an arbitrary number of small trapezoidal panels (not more than 100) in a
faghion dictated by the overall planform geometry and the locations of the
control surfaces. The number of panels in the chordwise direction can vary
over the span., Using the same panel geometry for all Mach numbers, asro-
dynemic influence coefficients corresponding to these panels are computed and
stored on tape using either subsonic vortex-lattice theory (Reference 3-1) or
the supersonic source distribution theory (Reference 3-2). For subsonic flow
only, the effect of a fuselage on the 1ift on the wing can be modelled in
this program using the method of images. By multiplying the aerodynamic
intluence coefficients by prescribed dynamic pressures and downwash distribu-
tions, the forces are determined for the selected loading conditions. Pro-
vision for various correction factors is included,




T

} o
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) i 3.2.1 Subsonic Influence Coefiicients
i
! In subsonic flow, the calculation of aerodynamic influence coefficients »
R is besed on the voitex-lattice method of Reference 3-1. If a distribution of
E vortices is placed uvn the surface of a planform, the res:lting downwash at
any voint, P;j’ 1s re,sted to the circulations of the vortices VLy: P
- ..
v 1
w (P{}) = i = re=; fY(P) K(Pj’ P, M) ds, (3.1)
S
where
: P  is any point on the planform with coordinates &, M, { ®
: P:j is a :jth point wita coordinates x, y; 2
x, § are strearwise condinates
¥, 1 are spanwise coordinates ®
2z, { are vertical coordinstes
S is the surface "
w  is the downwash angle :
v is the downwzsh velocity * '
. U is the free stream velocity
y 1is the circulation ‘
is the Mach number o
K is the kernel function representing the downwash created &t a point e
' due to a unit circulation over a unit area of a vortex sheet.
From the Kutta-Joukowsky theorem, it is known that cireulation can be related
to the 1lift and, hence, to the pressure coefficient, CP. Consequently, the ®
above equation can be written t
- L N
w (P:j) = sn/]cp(P) kK(P,, P, M) ds. (3.2} g
S L
4
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In the present method, the given surface is Givided into a lattice of I
parels, the sides of which parallel the free stresm (see Figure 3.1) and over
each of which the pressure is assurmed constant. Equation (3.2) becomes

: : & f
; ' w (pd) . %;r Z cp [j K(P,, P, M) as. (3.3) o
‘ =371 “Paner’t P

With the further assumption that the vortices in each panel are condensed to
\ a single horseshoe vortex, the tound portion of which 1j:s at the quarter chord 5
: of the panel, the equation reduces to

PO P RS R S T I R Al Y

I

v (Py) = = i};l C, 2% k(Py, P (g4), M) gs, (3.4) !
nel 1 ) ’

WL g AN DGR A

vhere Agi is the average chord length of the ith panel and the integration is e
taken along the quarter-chord of the ith panel. Using the Biot-Savart law,
the final integral is evaluat'd in Reference 3-3, ylelding

o e o i w e mmen

fx(pj, P (g%), M) @S = Eyy = Fyy + Gy (3.5) ~ ?
Panel 1 . .

' where

EJi is the downwash at point j induced by a horseshoe vortex of unit
strength and length at panel i

; Fy; 1is the contritution to E,; due to the tralling vortices

Gdi is the contribution to Eji due to the bound vortex.

If it is desired in determining the pressure distﬁ}bution on a wing to
account for the effects of the presence of a fuselage, this is accomplished as
in Reference 3-4 by ireluding within the fuselage an image of each horseshoe
; vortex on the wing (see Figure 3.2), In this idealization, the fuselage is
agsumed to be 2 eircular cylinder of radius R and the imege of a point (x, y)
is located at (x, Ra/y). The downwash induced by the point and its image is

mmax'wm«o.~

»
- 1 t
By = (Fyy + 71 % (g + 61) (Ls B/5D), (3.6) | |
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Figure 3.1. Horseshoe Vortices and Downwash Points.
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where F! i and G i are due to the image and where the correction factor,

(1 + Ra/yi) » on the dowrwash due to the bound vortex is derived from two-
dimensivnal theory.
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Figure 3.2. Cylinder with a Pair of Horseshoe Vortices
and their Images,
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Substituting the apjropriate value of E

m for the integral in Equation (3:4),

one obtains

o ma cmers s SN e s stiincs § &
a

I .o
1 - " R
w(P)=zg= ) C_ 4L E.. (3.7) .
J'° 7 8n el U 3
If a point P;j is chosen at the 3/4-chord and midspan of each of the I penels and

the above equation is applied at each such point, a system of simultanecus
' linear equations results, which in matrix notation is

{w} =5 [‘AgJ [E] {cp}. (3.8)

This system 2an oe golved for the pressure distribution:

{Cp} B [\%EJ [E]-l {"} (3.9) ®

From this equation, an aerodynamic influence coefficient matrix ca: be

defined as .
\ -1 ..
[AIC] = [%\] [E] (3.10) | 2 ®

The downwash angle distritution, {w}, used in Equation (3.9) can be con-
sidered to cunsist of contributions, [wl}, due to the rigid surfaces inclina-

tion to the free stream and contributions, [wg}, arising from the deflections ’ 9
of any control surfaces on the surface. The first of these contributions is
comprised of three terms

tyd = o} +xy fay) + kg [og], (3.11)
»
|
where {
{qe} is the effective angle of attack of the surface optionally in the
presence of a fuselage
: (02} is the distribution of local incremental angles of attack due to b
‘, % camber ané twist '
1 -
®
P e e
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{03} is a distribution of additive corrections to the local incidences
based on empirical or experimental data

k2 s k3 are scalar correction factors also based on empirical or experi-
ment&l B.nta.

The effective angle of attack equals the sum of tne geometric angle of attack A

of the wing rrlative to the fuselage and terms due to the fuselage's inclina- b -
I tion and the upwash induced by this inclination. '

. A
tag) =%y o (U + e (14 #4%1 [or ] 01, .

(3.12)
vhere
oy is the geometric angle of incidence of the wing relative to the ).
fuselage reference line :
oy i3 the angle of attack of the fuselage reference lire :
R 1s the mean radius of the fuselage :
¥y 1s the spanwise coordinate of the panel of interest measured from ®
the fuselage centerline :
kl’ [Cl} are scalar corrections factors, ‘ ‘
‘ .
The contribution to the downwash due to N control surface deflections is ' .
) N i . :
(w,} = 21l [C] (ul, +x, {6, } ®
27 T S\Den L2 n Tk tT2,n i ‘
‘ > o+, }) (3.23)
+ Y (s [c ] (U} + X (6 3.13 .
n=l( Rn | 2§ n - Th o Y2,nt [, 3
; where !
i N is the number of control surfaces b '
; T :
‘ 5 L.p? 6R n are the rotations of the nﬂl left and right control surfaces :
’ ?%  respectively
{U}n are fractions (0<Uj,n s 1) denoting the portion of the jth i
: aerodynamic psnel that lies on the nth control surface, )
. t
(8, .} are additive ~orrections to the locsl rotation of the nth :
2 ‘
: control surface ’ ;
[‘:2] » ¥, are scalar correction factors. %
! nt by »
: |
? H
: 5
i
i »
’
i T e T e
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It should be noted that, in the absence of any correction factor, the
downwash distribution on a wing without fuselsge or control surfaces is quite

simple, namely {w} = @ f1} + ﬁra}.

3.2.2 Supersonic Influence Coefficients

In supersonic rlow, aerodynamic influence coefficients are obtained as
described in Reference 3-2 using 'a distribution of sources. The pressure ai a
point on a planar surfsce is related to the velocity potentiel and, thence,
to the downwash by

0<P)-°2°°°("» ) .2 ff agn, (3.14)
C'p is the pressure coefficient
PJ is a Jth point with coordinates x and y

x and £ nare streamwise coordinates

y and 1| are sparwise coordinates

U is the free-stream velocity
) 1s the velocity potential

v is the downwash angle at £, 7
R o= Wx-g2-g(y-n?

2 = -1

M is the Mach number

©

is the area of integration bounded by the inverse Mach cone
emanating from (x, y).

For a surface with supersonic leading and trailing edges, the area of
integration is bounded by the leading edge (see Figure 3.3a). Near a side
edge of such a surface, however, the potential is influenced by a region off
the wing as indicated by SD in Figure 3.3b. For such a case, Reference 3-5
shows that the effect of this off-wing region ig to negate +he contiibution of
the on-wing region S; delimited by the leading edge, the side edge and the
reflected Mach line. Consequently, only the shaded area Sw need be considered
for the integration in Equation 3.13.
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Figure 3.3. Areas of' Integration on & Wing with Supersonic Leading and
Trailing Edges.
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This concept can be extended to the case of subsonic leading edges.
Referring to Figure 3.4, the areas between the foremost Mach waves, OB' and
OD' and the wing leading edges, OEB and OGD, will affect the potential and
i cancel the influence of the regions EEC, EFH, etc. aheed of the reflected )
! . Mech lines BC, EF, etc. Thus, the areas to-be considered in the integration . -
are the successively forward quadril.terals ABCD, CEFG, etc. ‘

¥ b mermeewammms w - by

Forenost
Mach
Line

L e

¢

?

H
- »

Figure 3.4, Integratior Areas for a Wing with
Subsonie Leading Edges. ®
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Returning. to' Equation {3.14) end performing the differentiation indicated,

¢ o one. obhalnas -

P ; 2 )i 2 fw
Cp (,PJ) = ;[/g& (E) agn + ;t’g an, (3.15)
A

edie

which can be simplified to
2 ffa atn, 2 &v
CP(PJ) = nffaf -t ¥z (3.16)
. ]

In the above equations, T. E. and L. E. signify that the line integral is to
be evaluated along the trailing and leading edges of the area, S, respectively.

To evaluate the above equation, the planform is divided into a number of
trapezoidal panels, as was done in the subsonic cage. Over each panel, the
dowrwash is assumed to be constant, Consider a typical panel and its neighbors
e depicted in Figure 3.5. The contribution to the pressure at (x, y) of the
wedge aft of AEZC is

Iyoe = & f

ACG

./f+f .j}r+ff +£‘ (3.17)

ACG ABC ACFD DFG

v 48an gfz
¥ & *nJ g4
ARC

The contribution from the wedge aft of DEF is

Tbrc = —D/%{,: * ¢DEF . (3.18)

Subtracting these two equations, one obtains the contribution of the strip ACFD:

IAcm"/f *_¢ 'Sf ) (3.19)

ACFD ABC DEF
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Figure 3.5. Planform Divided into Panels. l‘ .
This can be broken up into the contributions associated with panel i (shaded in
Figure 3.5) and those associated with its spanwise neighbor(s). For panel i, A
one has:
wffff L f e
4
AEED AB DE si L.E.i T.E.i '
where only those portions of Si’ L.E. i and T.E. 4 that are within the Mach cone '
are congidered. Since the downwash is assumed constant over each panel, the ’ ®
surtace integral in Equation (3.20) equals zero and the net resudt involves
only line integrals along the leading and trailing edges. Hence, Equation ‘
(3.16) becomes:
;-
i »
|
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3 . c () =2 % -%1 - —3— (3.21)
S O in E .

: X : . 01 . .i s

where m is the number of panels within the inverse Mach cone. The reuaining ’ “—:,;,.‘::
integrals.are easily evaluated, since the equations for the panel leading and R
trailing edges are those of straight lines. R

-

For thin airfoils, the magnitude of the downwash on both sides of the s
surface can be assumed equal to the local angle of attack of the mean surface.
Hence, the net pressure coefficient is, merely, twice the value given in Equa-

|
b
. tion (3.21) with the downwash evaluated using Equation (3.11), Fuselage effectc N
l are not included, however, since the formulation given previously is not 1.

adequate for supersonic flow.
- { ‘ Denoting the two line integrals in Equation (3.21) as A.ji’ the net pressure
DT becomes

n
H

P):-B A 31 1=§+1w"'°’ (3.22)

where n is the total nuzber of surface panels and the second summation (equal .
l : to zero) containg those panels not within the inverse Mach cone emanating from
N i "’ ‘e
‘ PJ' Applying Equation (3.22) to the center of each panel, one obtains [

oo =[] {e}- (3.23) t ',‘
L

M

[AIc] - [A] . (3.24)

" The downwash distribution to be used in Equation (3.23) is specified in accor-
dance with Equations (3.11), (3.12), and (3.13). It is noted that the fuse-
lage radius, R, must be entered as zero for supersonic loads snalysis.
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3.2.3 Aerodynamic Forces

For a g* ametrically symmetric planform, pressure coefficients are computed
for the left alf only, based on an appropriate combination of symmetric and
antisymmetric aerodynanic influence coefficients and the specification of the

total (genera’ly asymmetrical) downwash angle distribution in terms of sym- \/
metrical and antisymmetrical components: /'
{CP }L ) [AIC]JW. ’w}sym.’ [AIC]anti-{" }anti- ’ (3.25)
sym, sym,
where

fhaym, = # [ toh + Ivlg ]
{¥hanes = 3 ["'*L - {"}R]
sym,

and L and R denote the left and the right halves, respectively, of the
symmetric planform, With the pressure coefficients determined, the total
serodynamic force on each panel is simply

{F}- épu""[s] {Cr} (3.26)

where p is tre air density and [S is & disgonal matrix of panel areas,
Using the procedures described in Section 5, the serodynamic forces are
finally transformed from the aerodynamics model to the structures model.
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3.3 INERTIAL LOADS

Using D'Alembert's principle, rigid-body inertial forces and moments at a

point on a body can be written as

. .

FanT+mwx‘uxp) +tmwxp

where
F  is the inertial force vector
M is the inertia) moment vector
r is tue position vector locating the origin of the reference axes
on the body
14 is the mass of the point
o 1isthe angular velocity of the reference axes
; is the position of the point relative to the reference axes
H 4is the moment of mamentum of the point.

Expansion of these equations ylelds

Fx,i = (x, -x) (Q2+R2)mi+(y,_-y°) (fl-PQ/mi
(2 - 2) (RP+Q) my -g N m

By =y - v)) (B e BPmy + (2 - 2) (P- ) my
~(x, - x) (PQ + B) m - g N m
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| | Fz, 1 =(z - zo) (F + @) m + (x, = x) (& - RP) m, r
"y - ¥g) (R+P) m -6 Yoy - ;
‘%(,t -°Ixx, »ié'IJq, N (PR-&) +Ixz, 1‘(I'le»l.!) 3?7"‘.
Tyt @), a1 DR .
%, 1 "Iw,ié-ryz’i(QP-é)nm1(9}“{’) _ '
'I;x, i (% - ) - (Ixx, i° Izz, 1) FP

"z, 1 * 'Izz, i R- sz,i (RQ - P) + Izy, i (RP + Q) b
2
Ty,  @-F - o1 R, (3.28)
where '
is the acceleration of vity
€ gravity s @

th

Xgs ¥qs 24y mg are the coordinates ond masa of the 1" point

I s I 4 » etc. are the inertia propeities about the center of
xx%, 1 “yy, & th
gravity of the 1™ point
Ny s N, are load factors | J

P, Q, R are x, y, z components of the angular velocity, U, respectively

Xy Yoo z, 6&re the coordinates of the reference point (usually the center

of gravity of the airplane), ®
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There are two types of mass data that the user may provide for inertial
load computations. The first type, termed "distributed masses", are simply
point masses with no rotational inertia properties. Thus the output of the
inertial loads routine for distributed masses consists only of forces at the
center of gravity of each mass item, Distributed masses sre most typically
used to define the mass of the finite element structures model {including
non-optimum factors where appropriaste) and are logically assigned to struc-
tures model node puints, The inertia properties of the structure are im-
plicit in the node point mass iatrihution, The second type of mass data,
referced to as "concentrated masses" , have both mass and inertia properties.
In this case the inertial loads routine computes inertial forces and moments
at the center of gravity of esch mass item, Concentrated masses are used
to represent large masses such as engines, stores, etec.

The computed inertial loads acting at the centers of gravity of the

various masses are subsequently distributed to the nude points of ths: i
structures model using the transformation procedures deacribed in Section 5,
g 3.4 PROVISION FOR DIRECT INFUT OF APPLIED LOADS
For non-maneuver loeding conditions (e.g., landing or gust loads) or
maneuver loading conditions for which applied loads have been determined » ®
directly from test data, separate loading conditions consisting of forces
at structural rodes mey be prescribed by the user.
|
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Section &
STRUCTURAL ANALYSIS

4,1 SUMMARY

Structural analysis and strength resizing capability are provided by
utilizing the Automated Structural Optimization Program (ASOP) desciibed in
detail in Reference L4-1, The analysis procedure employs the matrix displace.
ment method to obtain nodal deflections and internal element corner forces,

The corner forces are then converted into forces that are equivalent to those
obtained by the patrix force method, and these are subsequently transformed
intv representative element stress levels, Resizing for strength requirements,
in the presence of minimum-gage constraints, is accomplished through the itera-
tive use of ratios of actual-to-allowable stress to satisfy the fully.stressed-
design optimality criterion. '

The following paragraphs provide a summary of the finite elements that
can be used in a structural idealization within FASTOP, The basic aspects of
the overall structural analysis procedure are briefly reviewed and the numeri-
cal method for solving the structure's load/displacement equations is presented.
Further discussion of the redesign aspects of ASOP, in the context of the com-
bined strength-and-flutter optimization problem, is given in Saction 10,

4,2 SUMMARY OF AVAILABIE FINITE ELEMENTS

The finite elements available for structural modeling are those that are
commonly used in major structural analysis involving metallic construction,
With the exceptica of the plate elements (i.e., the bending triangle and the
bending quadrilateral), all of the elements in the following list have stiffness
characteristics that are directly proportional to their weight, thus making
them ava“lable for resizing in FASTOP, Plate elements should be used for anal-
ysis only. The elements, which are discussed in Reference L-1, include

¢ a uniform bar element

e 2 uniform beam element having constant radii of gyration in its cross-

section

e an anisotropic triangular membrane element
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¢ an anisotropic planar quadrilateral membrane element.
& a quadrilateral warped or planar shear panel element

e an anisctropic warped quedrilateral membrane element

i ¢ & hinged beam element

e T T
. . < * - :

¢ an anisotropic bending triangle element

e an anisotropic bending qradrilateral element

¢ a combined triangular membrane and bending triangle element

¢ a combined planar quadrilateral membrane snd bending quadrilateral,
4.3 REVIEW OF ANALYSIS PROCEDURE

In applying the matrix displacement method, the analyst first esteblishes
a structural idealization comprised of the above elements, and representing,

as closely as possible, the actual topological srrangement of the primary

structural members, The required input datz is then classified into groups
defined as:

nodal geometry, member dusta, boundary conditions, material tables
and applied loads, The member data contains both topological cdata plus member
sizes, Using this information, the program assembles the total stiffness

matrix (K] by superimposing the element stiffness matrices compatible with a
global coordinate system. Tnat is,

*wmm.www.“'."“ o

O

n
(K] =3 a [k, (1)
i=1

e s e e

where ay iz a function of the design parameter t, and [ki} 1s the expanded
element stiffness matrix for a unit value of that design perameter with the

appropriate boundary conditions spplied to it, The [ki] matrices are calculated
only once and stored,

P

In succeeding redesign cycles they are multiplied by the
ne, design parameter und reassembled to form the new [K] matrix,

- 2 o N wul
s et i SRR NI SR

Applied torces for the various lcading conditions are entered by referring

then to the node point at which they are epplied and to the global coordinate
direction in which they act,

The forces are then transformed to corresrond to
& degree-of-freedom numbering scheme associated with the free degrees of free-

¢

: dom in the idealizatien,

The resuliing load matrix, [P}, is then one in which
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the rows correspond to the degrees of freedom and the colwns correspond to
loading conditions, The equations of nodal equilibrium are thus

. ——— o ———

[xj(a] = [F], | (k.2)

0

where [A] is the matrix of nodal displacements, This system is solved by

using & modified version of the Cholesky alguritim (discussed in the next sub-
section) and the resulting displacements are then converted into element comer Y ,
forces, [q], by

rad = [s, 104, 4 (4.3)
®
in which [ sl] embodies both element stiffness matrices and appropriate force
transformations from a global to a local element coordinate system,
!
The procedure adopted for defining internal stress levels is the "nodal f
stress method" described in References 4-1 and 4-2. This procedure first con- °

verts the element corner forces, [ql, into a new system of forces that are
equivalent to those obtained by the matrix force method of analysis (i.e., cap
loads and shear flows), Then, an approximate strain-compatibility relationship
is used at each structural node point to determine the states of atress at the _
corners of each finite element. Representative single values of stress cre . e @
then computed at each corner for use in a stress-ratio resizing formule that '

relates this value of stress to its allowsable,

4.3,1 Solution of the load/Displacement Equations

The soluticn of Equation (4.2) is accomplished by employing the Cholesky
algoritim for decomposition of positive-definite symmetric matrices (see
Reference U4-3), This technique is also used elsewhere ih the FASTOP system :
(cee Sections 7,8). The overall solution prccedure involves the following )
steps: -
eps ' ®
First, factor [K] by the Cholesky algorithm such that
7 :
(k] = (L](1], (4.4) i
>
where [L] is & lower zriangiler matrix. The procedure for obtaining [L] is ;
i
i)
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based upr . 31 lefining relationship, Equation (4.4), and the positive-definite
symmetric iature of the stiffness ~trix [K], It first involves the calculaticn .
of elements in the first columr, dAven by

1/2

by =k

by “Enlhy 123

where the 4's and k's are the elements of' [L] and [K], respectively. There-
after, each successive column of [L] is computed with the following recursion
formulae:

r=]

i
3, =0 1<) r
1.3
2,1/
by = (eyy = 3 4y,) >1 E
r=)
31 ‘
1y, = (kyy - ) L, "Jr)/‘:i;s 1>, ?
[

Equation (4,2) mey now be rewritten as

[LI17Ca] = [P]. (4.5)

In the gecoud step, define [2] = [L]T[A] and solve

)
[r(z] = [P] (4.6)
for [Z] by successive substitution, starting with the first equation end pro- {
i
ceeding downward, Y
For the final step, solve *’
T
(r]"(a] = [2]
for the displacemen’s, [4], by successive substitution, starting with the last »
equation and proceeding upward,
29 ,
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Section §
TRANSFORMATIONS BETWEEN MATHEMATICAL MODELS
5.1 SUMMARY

Becausge different mathematical models are employed in performing the major
analysis tasks required for the design of a lifting surface, it is necessary, in
an integrated system, to provide automated methods that transform data cbtained
with one model into a suitable form for use in another, The transformation of
serodynamic and inertiad applied loads into structural node forces is achieved
by using fully wutomated "load-beaming" procedures that rely on assumed load
paths, These same procedures, with some added special capabilities, also pro-
vide a basis for establishing a method that transforms flexibility and mass data,
defined in terms of e structures model, into a form for use in vibration analysis,

5.2 DEFINITION OF REQUIRED TRANSFORMATIONS

To perform the analyses required for the structural design of a lifting
surface, four distinctly different mathematical models are usually employed,
For deter;nining applied aerodynamic loads, an aerodynamics model provides a
regular planar distribution of points at which angles of attack are specified
and forces normal to the plane are calculated, When rigid-body inertial loads
are being considered, a weights model is defined, comprised of lumped-mass points
representing both structural and nonstructural (i,e., leading- and trailing-edge
asgemblies, fuel, actuators, etc.) mass items, A structures model, used to de-
fine internal load distributions and elastic flexibility, consists of an assem-
blage of finite clements representing the actual arrangement of primary struc-
tural members, To determine the surface's modes of vibration for subsequent
flutter analysis, a dynamics model is defined, This model consists of lumped
masses having degrees of freudom that ere impo:iant for the accurate determi-
nation of the lowest-frequency vibration-mode characteristics and will usually
differ from the weights and structures models,

It is evident that an integrated analysis system must provide the capability
for automatically transferring data from one model to the next in the analysis
sequence, Since each analysis function, however, utilizes a model tailored to
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its own specific discipline, it 1s also necessary to provide certain data trans-
formations, The automated procedures included in FASTOP pro-.ide for

¢ transformation of loads in the seroaynamics and weights models to
equivaient applied loadn in the structures model, and

¢ transformation of flexibility and mass matrices associsted with the
structures model into simidar matrices that are representative of
the dynamics model,

A1l of these transformation are based on principles of "load beaming",
that is, assumed relationships that transfer loads in one model to sets of
statically equivalent loads in another,

5.3 DESCRIPTION OF BEAMING PROCEDURES

The methods for transferring (or "beaming") forces in the aerodynamics
model and forces and moments in the weights model to the structural node points
are illustrated in Figures 5.1 and 5.2, Two basic types of beaming are provided,
The "eight-point" procedure is designed primarily to transfer applied aerody-
namic or inertial loads that act at locations within the geometric boundaries
of the primary structure. The "four-point" procedure is intended to transfer
loads that act outside the structure, such as at a wing's trailing or leading
edge. When using either procedure, transformation matrices are established
that express loads at the strurtures-model node points (in its coordinate system)
in terms of unit applied loads in either the aerodynamics or the weights models
(in their respective coordinate systems), For aerodynemic forces, provision is
made for transferriu.g only forces that act normal to a reference plane; however,
for inertial loads, all six components of force and moment may be transferred,
The program requires as input the nodal geometries of the pertinent models and
correspondence tables that indicate the manner of beeming and the nodes from and
to which the loads are to be trgnsferred.

The assumptions made in both procedures are described in the next two sub-
sections, These are followed by a discussion of the use of load beaming as a
first step in developing the transformations that are required to convert data
from the structures model to the dynamics model. It should be noted in the
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a. Applied Load Point Within Structural Nodes

b, Applied load Point Outside of Structural Nodes

Figure 5.1, Eight-Foint Beaming Procedure,
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Reference Plane

Structures Model

o e e

a Reference Plane

t. Appliel load Point Outside of Structural Nodes

L R 5 ST

Figure 5,2, Four-Foint Beaming Procedure,
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following -discusaions that the x-y coordinate planes of all mathematical models @
are assumed parallel, even though the coordinate syastems may have different e
origins, R

5.3.1 Eight-Foint Beaming

Referring to Figure 5.1(a) or (b), point M represents an applied aero-

i dynamic or inertial load point; points I, J, K, L and N, 0, P, Q represent

I the upper and lower cover structural nodes, respectively, to which the applied
loads are being trangferred, The "beaming plane" contains point M and is paral-
lel to the structures model x-y plane. The line e-f is defined perpendicular ®
to the line a-b, and g-h is parallel to a-b, Thus, e~-f, g-h, and a normal to the

beaming plane form a local, orthogonal coordinate system,

™

Unit applied forces and moments are first transformed into components in .

. this local system, Iocal loads Px’ Py, Pz, and My are first trensferred along . PY
i line e-f to points e and f, under the assmumption that e-f acts as simple (pin-
', ended) beam, Then, using a-b and c-d as gimple beams, the loads are trans'terred

to points a, b, ¢, and d, where they are finally beamed to the structural node
; points, The local moments Mx and Mz follow a different path; they are first
beamed to g and h, and thence to a, b, ¢, and d by using a-c and b-d as simple ® - .
beama. ;

It should ve noted that all applied moments are initially transformed into
force couples in the first beaming step, and only force components are eventually
transferred to the structural node points, Also, forces that are applied parallel
0 & beam member are distributed to the end points in inverse proportion to the ®
distances from the point of application, )

After the forces at the structural node points are determined, they are
then rotated into the structural coordinate system,

: 5.3.2 Four-Foint Beaming

b ¥ i AP Sl A W 4 o B

‘ [
As indicated previously, this procedure is particularly applicable to aero-
i dynamic or inertial loads that are applied at points extermal to the structural
E idealization, Referring to Figure 5.2(a), point M represents the applied aero-
‘ dynamic or inertisl loading point; points I, J, K and L are the structural node
‘. points to which the applied loads are being transferred, The "reference plane" ®
i
H
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is parallel to lines connecting I with L and K with J, and contains points e
and f which are the'mid-pointa of I-K and J-L, respectively, Points a, b, ¢,
and d are orthogonal projections of the structural nocde points on the refer-
ence plane, The line g-M is perpendicular to line e-f; these two lines and a
common normal define a local, orthogonal coordinate system,

Unit applied forces and moments at M are firast transformed into this local
coordinate system, and then transferred to point g, under the assumption that
M-g acts as & beam cantilevered from point g, Next, they are transferred along
member e-f to its end points, with this member acting as a beam capable of
resisting bending, axial load, and torsion., The torsion-resisting capability
at e and £ is sssumed to be confined to the planes connecting I-K-a-c¢ and J-L-
b-d, respectively., The three force componenta and the concentrated moment at
each point, e and f, are then transferred to the structural nodes by assuming
that members I-K and J-L are pin-connected at their respective structural node
points, Where forces and nioments are applied parallel to a memher, they are
distributed to the end points in inverse proportion to the distances from the
point of application.

For the special case where point g lies outside of points e and f, as shown
in Figure 5,2(b), the torsional moment about e-f and the axial force acting along
this member are assumed to be resistcd totally by the more adjacent support
point which is f in the illustrative example.

As with the previous beaming procedure, after the forces at the structural

node points are determined, they are then rotated into the structural cocordinate
system,

5.3.3 Special Beaming Features for Use in Defining a Dynamics Model

Tne preceding beaming procedures are also used in the transformation of
flexibility and mass data associated with the structures model into a form com-
patible with a dynamics model, Specifically, these procedures, along with the
special added features discussed next, enable the definition of load paths for
transferring inertial loads in the dynamic3 model to the structural node points.
Once these paths have been defined, considerations of virtuasl work and kinetic
energy lead to a means for arriving at raticnally determined flexibility end
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mass matrices for the dynamics model, These latter steps are fully disciased @
in Subsection 5.k, SR
5.3.3.1 Provision for Swept Degrees of Freedom, In dynamics modelling it is b

often desirable to prescribe degrees of freedom that are parallsl to primary
structural members rather than the structural coordinate axes, For exampile,
pitching motion of a mass point representing a portion of the trailing edge

assembly of a wing might be described about an axis that is parallel to the

swept rear beam, To accommodate this type of coordinate rotation, & feature is ®
provided thet enables the program user to specify a sweep angle, a, at each

dynamic node point, as illustrated in Figure 5.3, (It is noted that these sweep

angles are limicved to the x-y plane,) The preceding beaming procedures are then

used to transfer unit inertial loads in the local swept coordir{ate systems into

structural node point loads in the structural coordinate system, ®
Y L
Lo~al Pitch Axis X .
Structural i
Axes »
Sweep Angle, u o
Typical Dynamics
Model Node Point. ,
’
!
i
b
{
;
H
Figure 5.3 Swept Coordinate System for Dynamics Model Degrees of Freedom f.
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5.3.3.2 Direct load Transfer, This option pemmits the direct transfer of forces
and moments from the dynamica to the structures model when selected degrees of
freedom at a node point are identical in both models, It is particularly useful
in transaferring moments to structures model node points that attach beam elementa,
This differs from the previous techniques which tranafer loads to node points
that are assumed to be incapable of sustaining applied moments.

5.3.4 FPracticsl Considerations

In the procedures just discussed, applied loade are trans formed from one math-
smatical model (along assumed load paths) into a statically equivalent set of loads
in the structures model, Since the manner in which the user relates the structural
node point numbers to the points I through L and N through Q can affect the final
load distribution, he should try to use these procedures in ways that enforce the
most reasonable load @istributions from the viewpoint of local structural char-
acteristics. This point is best illustrated by a simple example,

Consider an applied wing tip pitching moment that is to be transferred by
four-point beaming to structural nodes 11, 12, 13, and 14, and assume that the
user has assigned these node numbers to I, J, K, and L as illustrated in Figure
S.k(a). In accordance with the procedure outlined previously, the beaming nember
e-f will be essentially horizontal, and the structural nodes will therefore re-
ceive the applied moment as approximately vertical forces, Cn the other hand, if
the node numbers are sssigned to I, J, K, md L as 1llustrated in Figure 5.4(b),
the member e-f will be approximately vertical and will deliver horizontal forces
to the structural nodes, If the structural tip assembly is attached to the pri-
mary structure with continuous rows of fasteners along the upper and lower covers,

4t would be more logical to assign the node numbers in accordance with the second
case,

Some further rezommendations are required with regard to defining load
beaming from the dynemics model to the structures mciel. The dynamics model
load beaming matrix is used to transform the structural stifi{ness matrix to
a dynamic flexibility matrix using & procedure discussed in Subsection 5.4.1.
This flexibility matrix is subsequently inverted in the process of calculating
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matrix [B]T, which transforms dynamics model displacements to structures model
displacements (see Equation 5.7). The dynemics model flexibility matrix must,
therefore, be norn-singular., A singular flexibility matrix can occur if the
the number cf structural degrees of freedom designated for load beaming is
less than the corresponding number of dynamic degrees of freedom that are
being created, The user must therefore avold over-utilization of structural
degrees of freedom in any zone of the structures model,

The user should rlso follow the genersl rule of designating dynamics
nodes which are adjacent to structures nodes, This will ensure correct
accounting of the increment i dynsmic mass matrix prescribed by Equation 6.2,
Choice of a compleiely arbitirary dynamics model grid, in which dynamics loads
are distributed to a large number of structures riodes, can lead to a singular-
ity in the updated dynamic mass matrix computed by Equation 6.1. An example
of the recommended procedure is illustrated in Figure 11,4 where it is noted
that dynamic node points are coincident in the X-Y plane with structures nodes
and are positioned vertically between the upper and lower covers.

5.4 TRANSFORMATIONS REQUIRED TO DEFINE A DYNAMICS MODEL

The following procedure is ¢ nployed to transform flexibility and mass
data from the structures model ‘o the dynamics model. It ascumes that the
previously discussed beaming procedures have first been employed to develop

a transformation matrix, [T)], that relates forces (or moments) in the dynem-
cs model, [Fb}, to forces (or moments) in the structure model {Fa}; thut is,

{r} = [7] {Fp}. (5.1)

5.4,1 Flexibility Transformation

Fror the concept thet virtual work is invariant under a coordinate trans-

formation, it follows that if forces relate in accordance with Equation (5.1),
then displacements relate as

{a,} = (1l T {8} » (5.2)
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vhere { AD} and {A‘} arve displacements in the dynamic end structural degrees of o
freedom, respectively, TN

The displacements in the structure are re¢lated to applied forces by the ":‘,\
structural flexbility matrix, [k 17; that ts,

)= k), (5.3)

»
Substituting {F.} from Equation (5.1) into Equation (5.3), premultiplying by j
m T, and then making use of Equation (5.2), enables us to write

fa} = (21 T [k, 1) (£}, (5.4) |

Ttis equation gives dynamics model displacements in tarms of forces in the
srue model, and we may thus define the dynamics model flexibility matrix, [A],
as

ral = (00%0k 174, (5.5)

Provision in made in FASTOP for the automated computation of this flexibi-
1lity matiix and its transfer to the vibration analysis module discussed in Sect-
ion.7. For the special case, however, where the degrees of freedom of the dynam-
ics model correspond exactly with those of the structures model, the preceding
transformation process may be Lypassed. Inthis instance, the structural stiff- : ”
ness matrix, discussed previously in Section 5, ia trensferred to and used di-
rectly for vibration anralysis,

5.4,2 Mass Transformaticn

[ ]
The relationship btetween structural node displacements and displacements in
the dynamic degrees of freedom may be obtained by substituting Fquations (5.1)
and (5.14) into Equation (5.3) and making use of Equation (5.5):
fa,} = [k 37T ra)™ra ) (5.6) b
s R AD . .
¥
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By defiuing the displacement transformation matrix

B - x 1M, (5.7)

: and requiring that the kinetic energy of the structures model be preserved in the

dynamics model, we may obtain a consistently defined mass matrix for the dynamics
; model, as follows:

: Kinetic Energy = 1/2 {AS)T[MBJ {As}’ (5.8)

; vhere [Ma“ is a mass matrix corr=sponding to the structures model. Substituting
{ the velocity form of Equation (5.6) into Equation (5.8), and making use of

g Equation (5.7), yields
i
H

Kinetic Energy = 1/2 (a1 (B0 I (ST (), (5.9)

where the inner triple product is the desired dynamics model mmss matrix, [MD] H
that 1is,

; Do) = (8] ) e)T. (5.10)

In the event that the degrees of freedom of the structures and dynamics
models ave identical, the computation of (3} may be bypessel, with the mass
matrix of the structures model “eing used directly in subsequent vibration
analysis, Further discussion on the calculation of the structures model mass
matrix, in conjunction with the options for defining dynamics model data, is
presented in Section 6.

5.4.3 Computational Considerations

Equations (5.5) and {5.7) show that the inverse of the structural etiff.
ness matrix, [Ks.\ '1, is present in the expressions for the dynamic flexibility
matrix [A] and the transformation metrix {B). As equation soiving routines are
more eff cient than inversion outines, the following computational procedure
was incorporated into FASTOP,

»
First, & new matrix (Y! is defined by the relation :
' vt = [st'l (1), (5.11) ;
:
! or equivalently, s
kJ (v} = (T, (5.12) g
{
{
!
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In vievw of Equation (5.11), Equations (5.5) amd (5.7) can be put in the form _ @
{ 7,
tal = ()% 0, (5.13) 1g o
]
@
and 5}
X L1 ; )
wm=-wmt. (5.14) ;
. X p
Within FASTOP, Equation (5.12) s solved for {1}, which is then used in Equation é
(5.13) to compute {AY. Then, having (A} and (¥}, Equation (5.14) is solved for ; |
{al. ’
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Section 6

MASS MATRIX DEFINITION
6.1 SUMMARY

Two alternate approaches are available for the computation of the dynamics
model mass matrix required for vibration analysis, Ore approach requires that
initial mass input data be specified by the user while the other 1is fully auto-
mated and calculates initial mass data using the structural model idealization.

6.2 INITIAL DYNAMICS MODEL MASS MATRIX SUPPLIED BY THE USER

In this approach, the dynamics model mass matrix, [MD], is considered to

be the sum of a constant mass matrix, f'MD], associated with the initial design,

plus 8 varisble mass matrix, [AT&D'I, which reflects the accumulated design changes
beyond the starting design; that is,

M) = TH] + Ta). (6.1)

The task of generating [ﬁD'J for the initial design is usually the respons-
ibility of a weights engineer, who must account for the pressnce of structural
members, fixed mass items (equipment, overhanging structure, etc.), initial mass-
balance weights, and all of the nonoptimum components (fasteners, Joints, etc,)
which contribute to the total weight of the real aireraft structure, Based upon
the weights and locations of all these items, the weights engineer musy develop
a single representative dynamics model mass matrix for direct input to the system,

Computation of the incremental dynamics model mass matrix, [a.] s 1s auto-
mated within FASTOP., Inasmuch as all redesign beyond fﬁD] involves structural
members and/or mass balances, both of which are determined in the structures

model, it is natural to first compute the incremental mass matrix in the struc-
tures model, [AHS], and then transform the result to the dynamics model; that is,

a1 = [8] (47,0 1577, (6.2)

where (Bl is the transformation matrix previously defined in Section 5.k.2.
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Computation of the diagonal matrix [Aﬁsj is strajghtforward. If the current \
gage of a structural member differs from its starting value, the incremental \
weight of that member (including any nonoptimum factor specified by the user)
is ccmputed and then distributed equally among its attaching structural node

points, For each such node, this "nodal weight" is then assigned to each of the Y

translational degrees of freedom in [Aﬁsl associated with that node. The pro-

cedure is essentially identicsl for a mags-balance variable, except that the e

incremental weight is applied entirely to the single structural node at which

the mass balance is located, Finally, [aMs] is complete when all the structural
members and mass balances have been considered,

»
6.3 FULLY AUTOMATED COMPUTATION OF DYNAMICS MODEL MASS MATRIX
In the event that time or personnel are not sufficient to generate the
initial input mass data required by the preceding approach, a fully automated
mass calculation procedure is available. At any stage of design (starting or
otherwise), the fully automated method obtains a dynamics model mass matrix, ®
[MD], by first computing a mass matrix, I'M‘] , in the structures model and then ‘
transforming the result by ;
i
T z
(My3 = 8] [M ] FBY, (6.3) »
i
The computation of I Ms'l is identical to that of [ A'Ms] in the first procedure,
except that here total weights of structural members and mass balance: are
used, rather than incremental weights beyond the starting design. Also, the
user has the option of inserting fived mass additions to fM‘] {(not necessarily »
diagonal) before transforming to the dynamics model. |
»
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7.2 TRANSFORMATION OF EIGENVALUE PROBLEM TO A SPECIAL SYMMETRIC FORM o
The first step in the solution procedure 1s to transform the structural- E
vibration eigenvalue problem into the form b
¢
§
(0] {y} = Ay}, (7.1) i
vhere E
°
D] = a real symmetric matrix having only real roots
{Y} = an eigenvector of the transformed problem
A = g real eigenvalue (= l/u?)
w = a natural frequency in radians/sec.
This transformation can take either of two forms depending on whether the
initiel structural representation is in terms of a stiffness matrix or a
flexibility matrix. It should be noted that the eigenvalue, A, is defined
. here as l/w2 since the zolution procedure to be defined subsequently will
. determine the higher elgenvalues with greatest accuracy.
7.2.1 Stiffnegs Matrix Formulation
? The eigenvalue problem for the stiffness matrix formulation may ™e
“ritten as ®
b5
»
[

Section 7
VIERATION ANALYSIS

7.1 SUMMARY

The procedure for computing modes of vibration begins with the transfor-
mation of the familiar structural-vibration form of the eigenvalue problem into
a special symmetric form. This is followed by a further trensformation to
tridisgonal form by Householder's method (Keference 7-1, pege 290). A Stumm
sequence technique (Reference 7-1, page 300) is then employed to determine the
eigenvalues, and inverse iteration (Reference 7-1, pege 321) is used to cal-
culate the eigenvectors. This procedure has proved to be both efficient and
accurate for problems where the solution may be achieved directly in core.
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(M) {x} = A[K] {x}, (7.2)
where

{M] = the mass matrix of the dynamics model idealization
[K] = the stiffness matrix of the dyramics model idealization
{x} = an eigenvector in dynamics model coordinates

and the definition of A is the same as for Equation (7.1). Factoring the
stiffness matrix into

[x] = () (L7 (7.3)

by Cholesky decomposition, discussed previously in Section 4.3.1, and sub-
stituting intc Equation (7.2) yields

rM] (x} = AL [23° (x3, (7.14)

where the factorization of Equation (7.3) requires that [K1 be nonsingular.
Letting

ty} = (227 (x} (7.58)
or
{x} = 1T (v, (7.5b)
and premultiplying Equation (7.4) by Lyt gives
(et (M) (237 v} = A () (7.6)
or

{p) {y} = {v}, (7.7)

where [D] = [1)°} [8] [£]°T. It should be noted that [p] is symmetric since
M] is always symmetric.
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After the eigenvalue problem of Equation (7.7) is solved, as discussed
subsequently, the eligenvectors are transformed back to the dynamics model co-
ordinate system using Equation (7.5b).

7.2.2 Flexibility Matrix Formulation

The eigenvalue problem for the flexibility matrix formulation is

M1 {x} = A (A7t (x) (7.8)
or

[A) (M) {x} = {x], (7.9)

_where A] = [K]™! = the flexibility matrix, and [MJ, [K], (X}, and A are the

same as defined previously. Factoring the mass matrix into

(M = (ol ” (7.10)
and substituting into Equation (7.9) yields

@My ] It x} = {x}. (7.11)

Making the same substitution for {X} as defined by Equation (7.5b), but, in this
case using (L] as defined stove, and premuitiplying by [L]T, yields

(I® (ad (21 [y} = A {¥) (7.12)
or
ol {y} = x {y}, (7.13)

where

) = (1’ a7 (L.

Here again, symmetry is preserved in the transformetion, and the ejgen-
vectors are transformed by Equation (7.5b).
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! 7.3 COMPUTAYION OF VIBRATION MODES FOR A CANTILEVER STRUCTURE )
Computation of vibretion modes for a cantilever structure proceeds as .
described previously in Section 7, where the formulation of the eigenvalue
i problem employs either the structural stiffness matrix (Equation 7.2) or the
: dynemics model flexibility matrix (Equation 7.9) of the supported structure.
The former approach is taken where degrees of freedom of the dymamics model
correspond exactly with those of the structures model. °
7.4 COMPUTATION OF VIBRATION MODES FOR A FREE-FREE STRUCTURE
Although the computation of free-free modes also uses the stiffness or
flexibility matrix .of the supported structure, the formulation of the free-free
eigenvalue problem requires relaxation of the fixed support points to allow ®
rigid-body motion of the structure. The analytical procedures are described
below. In the following discussion a hypothetical "plug" is defined which is
assumed to be rigidly interconnected to all the fixed support points of the
structures model; the plug mass properties represent that portion of the ronfig- ®
uration not included in the dynamics model. of the flexible structure.
Figure 7.1 shows an unsupported (free-free) configuration consisting of
a rigid "plug" section connected at points A and B to flexible structure;
local flexibilities can exist at A and B. ®
| Typical Dynamic Point on Flexible Structure
;
)’
Rigid Plug Mass .
1 .
Bl p A
Plug Reference Point / *p ]
: ¢P
! Irertially Fixed Axes\~[ l
7 / Al N
! / - % !
Y ekl »
é Figure T7.1. Unsupported Configuration for Free~Free Analysis !
£
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The vibration equetion for this unsupported system may be written as:

where

po—— P,
ST

7,

o)

l:”“?]lﬂ L"emh]{'%} H (7.)

is & vector of abaclute displacements of dynamic pnints on the
flexible structure.

is a vector of absolute displacements of the plug reference point.

is the dynamic mass matrix of the flexihle structure alone; this
matrix was discussed in Sections 6.2 and 6.3.

is the mass matrix of the plug slone.

is the stiffness matrix for dynamic degrees of freedom of the
flexible structure excluding the plug; that is, this matrix defines
forces at dynamic points on the flexible structure due to displace-
ments at those points alone.

is the stiffness matrix for the plug degrees of freedom; that is,
this matrix defines the forces acting on the plug due to motion of
the plug alone.

is the stiffness matrix defining forces at dynamic points on the
flexible structure due to plug motion alone.

in the stiffness matrix defining forces on the plug due to motion
of the flexible structure alone.

Now, the absolute motion of the flexible structure {%} is due to both rigid-
body motion of the entire configuration and flexible (or relative) motion,
’¢DR|‘ . Accordingly, if the plug motions are chosen to prescribe the rigid-
body motions, it follows that

I
} AD] %%3-} (7.15)
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where [)‘D] defines the displacements of the dynamic points on the structure

due to unit rigid-body motions. The basic vibration equation can now be recast ’ )
in tems of i%R} and {¢P} by first substituting Equation (7.15) into Equation ‘ @
(7.14) and then premultiplying the result by the transpose cf the transformation
matrix in Equation (7.15). The result is )
il
BLLELAL AL LY R (1.26 1
— — ’ .
THIWLCS AD ¢ A jPp !
'
where !
T ,
o] = [40] Do) , 0] =[] [1] (1.170) ’
M |= 1*
(4] = [o]” [] o]+ [oe]
and >
= k]
[KDA] o] "n] N p]
" 1T
[kl = o) (%] [%0] (7.17)
] Bl Bl Dof T « b)) > o
X, X [x ] . |
However, Al , L AD] and | A] must all be zero because rigid-body motion alone P
(as prescribed by {¢P} ) cannot induce restoring forces from the stiffness v
matrix of the free-free system. The same conclusion can be reached in another ,i ’
manner. Consider, for example, the two terms present in the exprescion for :
[.FDA] in Equation (7.17b). These two terms respectively define the forces acting
at dynamic points on the structure due to (a) rigid-body motion of the flexible
structure alone (see Figure 7.2a), und (b) motion of the plug alone (see Figure »
7.2b). As these two force systems are negatives of each other, KDA rust
vanigsh. Matrices KAD] and [KA can be shown to vanish in a similar manner.
i
4
|
‘;
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{9} = (0}
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N -
(v)

Figure 7.2. Rigid-Body Motions of Structure Alone and Plug Alone

Thus, Equation (7.16) may be rewritten as
' |
- of [">_1¥0a| |%0a{ + %019} {fogl- {O1. (7.18)
AD :HA ¢p :° ¢p 0

It follows from Equation (7.18) that the rigid-body coordinates i%} are
expressable in terms of the relative coordinates {?pn} ; that 1s
-1

{o} - - [MA] [MAD] {%R} : (7.19)

Finally, if Equation (7.19) is substituted into Equation (7.18), the vibrat.on
equation for the free-free structure in terms of relative coordinates becomes

- ol [MDFF] {%a} + [KD]{S"JR} ,{ o} , (7.20)
[roe] =[] - Ba] (4] ™ [t0)

where
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Equation (T.21) defines the mass matrix [MDFF] for a free-free vibration
snalysis regardless of which of the two alternate approaches is used to obtain
the dynamics model mass matrix [MD] (see Sections 6.2 and 6.3). Of course,

the plug mass matrix MP must be supplied, If the flexibility approach is used,
Equation (7.20) may be writter in the form

(+[] L] *[£]) )= o

vhere AD is the flexibility matrix for dynamic degrees of freedom of the
flexible structure excluding the plug (see Equations 7.8 and 7.9).

After the *%R} are generated in the solution of Equation (7.20) or
Equation (7.22) using the eigenvalue solution procedures described previously,
the associated piug motions can be obtained from Equation (7.19) ard the
absolute displacei:nts of the dynamic points on the structure mays be computed
from Equation (7.15). The generalized mass matrix for the free-firee system
may then be obtained from the relation

[] - {_2_} ! [%D%%] {2_} (1.23)

In the event that the degrees or freedom of the structures and dynsmics
model are identical, matrix ["D is replaced by matrix [7\ S] which defines the
displacements of the structures points due to unit rigid-body moticns. The
matrix [xs] is always required if flutter-velocity derivatives are to be
computed for & free-free vibretion model (see Subsection 9.3.1).
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Section 8
FLUTTER ANALYSIS

8.1 SUMMARY

This module of the FASTOP package determines tle oscillatory pressures
and the generalized aerodynamic forces for the Lifting surface to be
analyzed, given a set of normal mode shapes and frequencies, Additionslly,
given the generalized masses corresponding to the modes, the program solves
the flutter equation to determine the flutter speed and values of modal damp.
ing and frequency as functions of air speed.

Generalized aerodynamic forces are computed using either the subsonic
assumed.-pressure-function procedure (kernel function), the supersonic Mach-
box method or the subsonic doublet-lattice procedure. In determining the
flutter speed, these arrodynamic forces are required at many different re-
duced frequencies; consequently, to save computing time, these forces are
determined at the required reduced frequencies by interpolation, using a
small number of directly calculated aerodynamjic forces as a basis.

The flutter solutions are obtained by use of either the conventional k-
method or an improved version of the p-k method of Reference 8-1. To allow
the user to study the flutter mechanism, several parameter variations have
been sutomated. For redesign purposes, the eigenvectors and their associated

row vectors are determined at the flutter speed when the p-k method is
selected,
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8.2 AERODYNAMICS ROUTINES

Three oscillatory lifting-surface aerodynamics routines, each based on
linearized potential flow theory, are included:

(1) a subsonic assumed-pressure-function program (kernel function) for
analyzing one or more planar, noninteracting, lifting surfaces;

(2) & supersoric Mach-box program for analyzing one or several plansr,
noninteracting, lifting surfaces;

(3) a subsonic doublet-lattice program for analyzing & general con-
figuration of multiple interacting nonplanar surfaces and slender
bodies, )

To minimize the required input data preparatjon, all of these programs have
been written or modified to provide automated geometry definition and modal
interpolation of vibration data, The latter either may be obtained on a
magnetic tape (or disk) from the vibration analysis program described in
Section 7 or may be user-supplied on input data cards. With the former
method of providing the vibration data, the user Las the option of elimi-

nating modal data not needed in the flutter analysis. To conserve computer

machine time, the program can be instructed to save the aerodynamic influence

coefficients on magnetic tape for subsequent reenalysis with altered vibra-
tion modes.

The following is a brief theoretical discussion of the aerodynamics
routines and the associated options,

8.2.1 Subscnic Assumed-Pressure-Function Program

In the subsonic regime, aerodynamic forces are compated using the assumed-
pressure-function method of Reference 8-2, For the general nonplanar case,

the pressure on a harmonically oscillating surface, such as shown in Figure
8.1, is related to the downwash by the following integral equation derived
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1) is the free stream velocity
h,a are the normal displacement and the streamwise slope of the surface
w is the harmonic frequency of oscillation
p is the air density
t is time
K is the kernel function specifying the normalwash angle &t P3 due
to a anit pressure at P
k is the reduced frequency = ubo/U
b° is the reference semichord
M is the Mach number.

This cen be rewritten as

'—,ﬂ P w.-»nl

o

T AR AT ' R g

wiP,) = —% /fp(P)K(PJ, P, k, M)dEd
v lmgU®
# S
or ‘
1
n(ey) = g ffe Bz, 7, x, Wagas, (8.2) o
S ;
and for planar surfaces can he written as g
;
w(xy) = g fforteMxeg, ynkm0azan, (8.3) L
S ;
i
where
w is the normal or downwash angle = W/U
Cp is the differential pressure ccefficient = p/q
q is the dynamic pressure = % gU2, 4
In the program, the planform coordinates (x,y) and (%,7) are normalized
with respect to the root semizhord, b,. These nondimensional coordinates
(x,¥) and (%,%) are, in turn, transformed into the coordinates of & square l
planform, (x, y) and ( 5,1]) as shown in Figure 8-2, After transformetion .
of coordinates, the integral equation becomes
¢ - 1 ah a
w(x,y) == (3= + 1kh)
o x
1, 11 _ o °
* — ColE,MK(-E, ¥-T,k,M)b(1)dean, (8.4)
Briby
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Free Stream

Figure 8.1. Nonplanar Harmonically Oscillating Surface.

from linear potential theory:

iut
: d(p,) et Egmw—jﬁ(wx(? » Py k, M) dgdo,
S (8.1)

vhere
P is any point on the surface, the coordinates of which are §, T, {

—— e

PJ is a Jth point, the coordinates of which are x, y, 2
x,% are streamwlse coordinates

y,7 are spanwise coordinates

z,{ are vertical coordinates
o is the tangential spanwise coordinate
(equivalent to 7 for a planar surface)
S is the total lifting surfa:e area
p is the pressure difference between the upper and lower covers of the
surface

¥ is the complex normel wash = U ¢ + iuh
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U is the free stream velocity
h,y &re the normal displacement and the streamwise slope of the surface
w i8 the harmonic frequency of oscillation
p is the air density
t is tine
K is the kernel furction specifying the normalwash angle at PJ due
to a unit pressure at P
k is the reduced frequency = wbo/U
bo is the reference semichord
M is the Mach number.

This can be rewritten as

,., . W_‘-w.wm—...-. --

“'(PJ) = L fP(P)K(Pj: P, k, M)dgda
ln‘er2 3
or
u(pj) 2 a}ﬁﬂ‘cp(e)x(? , P, X, M)d&dg, (8.2)
s °
and for planar surfaces can be written as g
i
v(xy) = g ffep(e Mg, yonxmagm, (8.3) i
§ :
where ® e
w is the normai or downwash angle = W/U '
Cp is the differential pressure coefficient = p/a
q is the dynamic pressure = & gU2, ~
In the program, the planform coordinates (x,y) ard (£,7) are normalized .
with respect to the root semichord, by. These nondimensional coordinates o
(X,¥) and (%,M) are, in turn, transformed into the coordinates of a square ‘
plenform, (x, y) and (5,3) as shown in Figure 8-2., After transformation ,
of coordinates, the integral equation becomes :
®
1 /3 ’
w(x,y) = & (5= + ikh)
o X
1, 1 -
= — Co(8,MK(x-T, F-1,k,M)b(N)aga, (8.14)
8rb,, -
N | ®
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x, (v) + x,(y)

Planform (in real coordinates)

Free Streanm

Leading Edge
x, () Ys N
bly) -
-~
~
// b
Midchord -~ xt(Y) - xl(Y) ° X, §
-~ =

Locus .~ b(y) = -l—
xm(y) = 2 ‘

Root

Transformations to Nondimensional Coordinates

= x/bo
Y/bo

<l X
Slum?
fl n
3w
s

o o

Transformations to Normalized Nondimensional Coordinates

< = Xxn(y) g = 55N
- b(y) = T

Yy = v/i, 7= 1/1,

The above transformations convert the planform intu a unit square.

Figure £.2. Coordinate Systems Used in the Assumed-Pressure-
Function Approach.
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vhere
lo is the semispan
bo is the root semichord
b(M) is the locel semichord.

In the above equation, the planform has been assumed symmetrical about y = o
as indicated by the limits of spanwise integration. Equation (8.4) must

now be solved for the unknown pressure coefficient distribution, Cp (5,3),

in terms of the known dowrnwash distribution. The solution procedure requires
that the pressure distribution be expressed as & series of terms, each of
which is the prodvst of an unkrown constant coefficient and a specific load-
ing function. The unknown constant coefficients are then moved outside the
integral and the remaining integration is performed. To assure that the
series can represent the pressure correctly, the loading functlons are
chosen to satisfy the following boundary conditions:

& A square-root singularity at the planform leading edge
¢ A zero at the trailing edge

® A zero at the nlanform tipr (or outboard edge)

® An infinite slope at the tip.

A suitable series expression satisfying these conditions, which is used in

Reference 8-2 and in this program, is
2(3-1)+5

J
81, -
¢p (&N = s'(%)v -ll-;é- .41-1_12 Zg
J=1

1
i.2
ofa +) & g (l+§)) s
(l’j g 1’!1 - (8.5)

where

ai j ere the, as yet, undetermired pressure series coefficients

?
8 =0fora symretrical distribution of airloads about the root and

= 1 for an antisymmetrical distribution
I is the number of ta2rms in the chcrdwise series
J is the number of terms in the spanvise series.
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After substituting the series expression for the differentiasl pressure
into Equation (8.4) and removing the unknown constants from the integral,
the remaining chordwise integrations are of the form:

e et e 20 A S e

S et ey

N AN s et

et

VoA,

»
! %
@ B i
Iy = f (1-w)(1+0)Pe 4 (w)au, (8.6) g
3 ; ;
) vwhere ;’
3 usg
E o = % and B = -%
i fd(u) is an appropriate polynomial of degree d.
) 4
In the spanwise direction, the integrals also are of the above form but with };
different values of « and 8. Inspection of Equation (8.5) shows the lead-
ing spanwise factor to be Vl - IF; however, the kernel function, K, of
Equation (8.4) contains a factor of 1/(1 - 32 ). Conseguently, the product
i of the pressure series and the kernel function has a factor of 1/y1 - J ®
{ making the appropriate values of yand 8: o =8 = -—1; in the spanwise
g integral.
f These integrals are evaluated using the Gauss-Mehler quadrature of
% Reference 8-3 (pages 312-357) to give »
i t
! Q
, I =2 Hlu) f4u), (8.7) ;
! q=1 1
i where ;
; Q is the number of integration points »
: H are weighting functions given in rows two and four of Table 8.1 (
; u_ are integration pointe given in rows two and four of Table 8.1.
Vith this method, if the integrand can be exactly represented by the preduat
of & simple singular function, such as 1/y1-u2, and a polynomial of ®
degree d = 2Q-1, then using the Q integration points would produce the
integral with no error. Although the true integrand cannot be represented
2xactly with a finite number of terms in the pclynomial part, by choosing
enough integration points, the error may be made as small as desired. b
; | |
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TABLE 8.1. GAUSS-MEHLER QUADRATURE FORMULAE
Q

J’ (1ow) (10 ey (w)an = ) g ) ng)

q=1
8 H ( weighting function) Uy (integration point)
4 3 Q+1 (Lug 2) - cos (Q+1
3 -4 2Q+1 (1-u ) - cos (§%§T— n)
4 3 55:_1' (1+,) - cos (&%)
4 4 |3 - cos (3L )

After the integrations are performed, Equation (8.4) can be written
I J

WET) =D Y Ly ) ey

i=1 j=1

N
‘2 Ln(;,y an, (808)

n=l

where

& ‘i,d’ N = IxJ

Ln = Li 3 = the result of the integration of the product of the
b
kernel function and the i,Jth pressure series term.

When Equation (8.8) is appli:d at a set of points on the wing (called
collocation points), a resulting system of linear equations relating the
downwash ut these points to the unknown coefficients is formed:

N
w(p) =ZLn(Pc) ‘o
n=1

.~ Y . BRSNS .‘»&n .~y
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or {"} = [L] {a} 3 (8.9)

(cx1) (CxN) (Mx1)

where
Pc is the cth collocation point
C 1is the total number of collocation points.

The locations of the collocation points are chesen so that the error
that would result from calculating the 1ift based on fitting a polynomial
thru the collocation points is minimized. Reference 8-2 shows that in the
chordwise direction, this loading is calculated from

1
,1+§

where f(f) is & polynomial. 1In the spanwise direction, the integral is

of the form
_Z.yg-gz gly) dy, . (8.11)

where g(z) is a polynomial., Since these integrals are of the same form as
Equation (8.6), Gaussian quadrature can egain be used. In the streamwise
case, Equation (8.10), o = -1 and B = +}, vhile in the spanwise case of
Equation (8.11) ¢ =8 = +%. Hence, the proper choice of collocation points
can be found in the first and third rows of Table 8.1.

The kernel function, K, of Equation (8.4) possesses a singularity as
¥ 7 and X—=%, Consequently, the collocation and integration points must
not be allovwed to coincide, From the above discussion and Teble 8.1, the
chordwise locations of these points are:

2i-1
integration points u, = -cos (§T;:T)’ 1=1,...,I

2¢
collocation points u, = -cos (55;11) ¢ =1,...,C, (8.12)

where
Ix is the total number of chordwise integration points

€1
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Cx is the total number of chordwise collocation points.
In the sparmwise dlirection, the locations are:

integration points u, = -~os (?-}-:L 1), 1 = L,.04,1
= i «?Iy Y

collocation points u, = -~cos (%371), ¢ =1,..,Cy (8.13)

© e Q‘Mw,m—wmvy_,,—'mw ~on o

wonere
Iy is the total number of spanwise integration points

Cy is the total number of spanwise collocation points. ®
With a choice of Iy = Cy+1 as in Reference 8.2, the points are distinct. In .
the current progran, Iy ¢t .« be chosen differently as will be described later, %

Equation (8.9) can be written for each mode to be used in the analysis; §
hence, for several modes b’

[w] = [L] [a] R (8.14)
(CxMM) (CxN) (3xNM)
where NM is the total number of modes. In Reference 8-2, the total number ;
of collocation points, C, must equal the total number of undetermined pres- '
sure series coefficients, N. With such a restriction, [L] is a square
matrix and Equation (8.1%) can be solved fsr [a] by simple inversion. For
relatively complicated mode shapes, requiring a large number of collocation .
points, this restriction forces the use of high order polynomisls to repre- ) o
sent the pressure distribution. Since this can lead to unrealistic convolu-
tions in the calculated pressures, a new procedurc has been adopted in the
present program which permits the use of fewer polynomial terms. In this .
approach, the [L] matrix is no longer square (C>N ) and Equation (8.1k4) ’
is solved in a least-square sense as described in Reference 8-k, ’
A least-square solution to Equation (8.14) consists of a matrix [a] ‘
which minimizes
| ] - [20s] | (8.15) .
»
where Il...|| indicates the Euclidean norm - defined as the square root of
the sum of the squares of the terms of the array. This is equivalent to
minimizing
T T T
(17 - [l T () - 18] La]). (8.16)
for each of the NM columns of [w] - [L][a]. »
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¥When the rank of [L]equals N, a solution can be obtained hypothetically by

URIIQERNY
T -1 T
1= ED) [ L) ©.a7)
However, [L] T [L] is frequently ill-conditioned meking this direct approach
impractical. Reference 8-4 shows that this problem can be avoided by first

deconposing [L] by an orthogonal transformation [T] s formed by the continued
product of Householder transformations (Reference 845), such that
; [][L] | Kl (8.18)
| 0
(cxC)(CxN)  (CxN)
®
where [R’] is an Nx'I upper triangular matrix., Appiying this transformation
; to both sides of Equation (8.14), one obtains
(3] (:1-[-J6)
Upon extraction of the first N rows, Equation (8.19) becomes g
(7] L2 = [z0)[0)(v), (8.20)
vhere [I] is an NxN identity matrix. Since R is an upper triangular matrix, :
this equation is easily solved by the back solution part of any linear- ®
system-solver (see Reference 8-3, pp 428-L29). Tt can be shown that
the solution of this equation is, indeed, a least squares solution to
Equation 8.1k, fThis is done by showing that it can be reduced to
Equation 8.17. To reduce the ccmputing time required in subsequent :
f re-analyses made with revised modal data, the user can save the matrices '
: {1} and [T]* [L] for future use. In subsequent analyses, new [w]
matrices are gen=rated and a system analogous to Equation 8.20 is
: formed:
| [ ] .
; o] (le)- ] Bl - fziol[r) -] . (e
: cl new old nev
. from which vressure series coefficients, [a], can be determined for the
i new modes.,
' ®
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Once the pressure series coefficients have been determined, the
normalized generalized air forces are computed by

1 -1
Qr’ = ;‘é‘Qrs = 'w‘a" .{/“hr(x’y) Ps(xay) dx dy, (8.22)
3/2

where

Qrs is the generalized air force in the rth

mode due to the pressure
from the sth mode

S/2 indicates integraiion cver one half of the planform

h_ is the deflection distribution in the r™ pode
th

p’ is the pressure distribution in the 8™ mode,
This can be rewritten as
a ‘9.95 [[h (x,¥) c (x,y) dx dy. (8.23)
2k

s/2

Transforming to nondimensionsl coordinates and substituting Equation 8.5,
this becomes

g, = hboloo Z [m J2(3-1) +8

.-« -...mmw‘:;m'wo» - -

L St

/

R R Lo s

®
®

b
&
i
1
i
1
i
&l

J=1 FL
1
l-x (s) () (r)
) X
_[Vl"""lm (‘1,.1 +2 (er1)x 2 ) 07,y daxay
-1
(8.24)

This integration is performed using the appropriate Gauss-Mehler quadrature »
formulae previously described. The number of integration points used in the
chordwise integration is twice the number of chordwise collocation points, Cx,
and in the spanwise integration equals the number of collocation points, Cy.

Important considerations in using the assumed-pressure function program »
are the choices of the number of terms in the pressure polynomial, the number ;
of integration points, and the number of collocation points. For Equation 8.14 %
to have a unique solution, the number of collocation points in both the ,
chordwise anl spanwise directions must be equal to or greater than the num- ;
ber of polynomial terms chosen to represent the pressure distribution in '
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the respective directions; i.e.,

Cx Z2 T and
c._2J. (8.2
v (8.25)

Furthermore, for chordwise and spanwise integrations of the product of the
pressure and the kernel function to be satisfactory, Reference 8-2 advises
that the number of integration points in each direction should obey the
relationships

I, = Cx and

1y 2 C 41 (8.26)
Tc increase accuracy, more integration points can be used in the present
progran than the minimum recommended. In Reference 8.6, it is shown that
the excess chordwise integration points can cause numerical difficulties
if their number is not chosen carefully to avoid close proximity between the
collocation and integration points. It suggests the following formula to

govern the choice:
I, = (c, +%) . (anc-1), (8.27)

vhere NC is a positive integer and ;x is taken as the truncated integer
value of the expression. In the present program, the user selects Cx and NC
as data after which the program itself computes I, from the above equation,
Additionally, the user supplies qy and a positive intege. , NS, as data; and
the program computes the number of spanwise integration stations by the

formula:

Iy = NS (cy+1) . (8.28)

One final empirical guideline suggested in Reference 8.6 to obtain
converged results is to choose the number of collocation points to satisfy

the ratio
gﬁ ~ Ve (aR.) (8.29)
v cos My
where

M is the Mach number
A.R. is the aspect ratio

Am is the sweep of the wing midchord at the root.
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8.2.2 Supersonic Mach-Box Program

For the supersonic regime, the aerodynamics program used i3 a modified
version of the Mach-box procedure described in Reference 8-7. For a har-
monically oscillating planar surface, the pressure is related to the velocity

potential, and thence to the dowrwash distribution, by
3
plx, y) =2 (Ugg+ ) o (x, ¥)

ﬁ-zﬁ(x-g) cosiﬂ—a-k
"‘%“"sa;*i“)/fﬂs,n)'e“’s ~~—-§§- dg M
S

-i —“Rf— (x-£)  cos —“%R
e {x,y) bW (e, 1) * us® U
or p X y) = T lox U wis, 7 e ¢ """""—R"""'dt. dn,
S

(8.30)

2, ¢

Mach Line
from Apex

Box Size is

Boundary of b by b/8

Idealization

Figure 8.3, Mach Box Orid for & Lifting Surface,
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:
where
x, & are streamwise coordinates
¥, T are spanwise coordinates
P is the differential pressure betwecn the upper and lower covers o
of the surface » .
p is the air density
U is the free stream velociiy :
w is the frequency of oscillation
@ is the velocity potential '\.\
8 is the 1ifting surface area bounded by the inverse Mach cone
emanating fror (x, y) A
W is the complex downwash velocity = U o + fwh = Uw i
h, a are the deformation and slope of the surface
M is the Mach mmber
p = Vi |
. R = Vix-g? -8 (y-12 |
' Cp " is the differential pressure coefficient = p/} pl°. '
With the exception of specizl cases, the integral cannot be evaluated in ) . . .
closed form; hence, a mumerical aporoach is required., In Reference 8-7, tte
area, S, is divided into elementary small rectangular boxes having their ,
diagonals parallel to the Mach lines as shown in Figure 8,3. The rectangles i i
are subsequently converted to squeres through the coordinate transformations i '
»
Streamwise X = x/b, b
€= g,
Spanwise ¥ = 8y/v ’
= Bﬂ/b, (8.31) ;
4
where b is the strezrmwise dimension of 2 box and b/3 is the spanwise dimension. 3
[ ]
§
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Assuming the downwash is constant ovc each of these "Mach toxes," Equation
(8.30) can be rewritten as:

kR
w9 -2 2.8 [[56n . o5 244
cp("’y)‘nd"d[ba;*iu] /feik("g)o 4 -b-p-dd,

c, G ¥ = ; vy (S_a_z + 1k) _/ [ tE 8 o . 2T,

m X R
%
(8.32)
or Cp (x, ¥) = E 7 CJ(‘;{, ¥, (8.33)
J
where
s 5 is the 3°P box within the inverse Mach cone emanating from (%, ¥)
= b
k U
2
~ M
k= &
(B) k
R VG-P2-G )
b is the streamwise box size
w 3 is te dowawash on the :jth box
¢ 5 is the ;jth pressure influence coefficiert for point {X. ¥); i.e.,

the pressure at the point due to a unit downwash on the Jth box.

Two metiiods have been classically used to perform the complex integration
over the bux area. The first, developed in Reference 8-8, uses a mean value
of the exponential and cosine terms vhen a box ls far removed fram the point
(?t', ?!') d a series expansion up to k2 when a box is close, though these
gpproximation: simplify the integration, they introduce significant errors,
when the reduced frequency, k, is high. For a more exact evaluation, a second
method, & Bessel function series representation of vhe integral, is presented
in Reference 8-7.
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The method used in the current program is different from both of these
two in that Gaussian quadrature is used to evaluate the integral. With this
technique, singularities that occur in the integrand when the box area is cut
or touched by the inverse Mach cone emanati.g from the point (;, ;;) -~ see
Figure 8.4a - can be accurately accounted for as described below. In fact, if
the integrand could be represented exactly by the product of a simple singular
function, such as 1/\,;; » and a polynomial of order 2N-1, then using N
integration points would produce the inmtegral with no error. Although the true
integrand cannot be represented exactly in the above manner, by taking enough

integration points the error may te mede as sw-11 a8 desired.

First, the pressure influence coefficient of Equation (8.32) is rewritten
by performing a change of variables:

—~ o~ L 9 m+% Z"‘% ikax KR dax
( fa o (2 - . KR dox .
CJ (x,y) g ( v + 1k){ f e cos 5 aay,
2

g

L]
f —
U
[
=
-
+
o
vb
+
o
0
o]
7]
!
fop-
&

m -} Ry (8.34)
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< [ 1
: e a a a a a e !
: ;
¢
a a a e
¢ e :
e a e ,
/ ¢ // e/
Inverse fd / §/ Inverse !
Mach Line 77 Mach Line . o
b7/ f
] Receiving
(a) Type of Singularity Point ‘ .
and Integration Area ' 3
a None - Unit Square i :
b Along 2 Sides - 1/4 Square d At 2 Corners - Unit Squera .
o Along 1 Side - 1/2 Square e At 1 Corner - Uniy Square s ,
(b) Local Mach Box Coordinates for Arbitrary Receiving Point i '
®
(3,8)1(8,3) [ {(4,2) 1 (4,1) [ {b,0) ] (b,1)|(b,2)((k,3)[(L,b)
' » ®
(3,3){ (3,2)[(3,1){(3,0){ (3,1)](3,2){(3,3) ‘ :
f A
1 A
Inverse (2,2)1(2,1)](2,0)} (2,1} [(2,2) Inverse :
Mach Line Mach Line '
1 (1,1 (1,0)[(1,1) "
— 5, 7 (0,005
: v oo Unit
; ~ ¥ XN |
' Xy £s =% I I R
t
®
P . :
Box Centers: :
8x = X - s?.=Axc=x--€c
by =5-%  m=lay)=I¥-7l
Figure 8.k, Singularities and Coordinate System for Mach Box Formulation. g
H
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where ’ ’

AX = X =

PRNUPRRSARES S P .,

3t v}

®

Ay =Yy -
i,m are the components of the distance between the :jth box center and the
point (X, ¥) - s~e Figure 8.Lb.

By -G -9 5
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Next, the two single and one double integrations are performed using various .
quedrature formulae of Reference §-9. Referring to Figure 8.4a, five cases

Fae 2 s s v

can arise depending on how the sending box is cut by the inverse Mszch cone
sron (X, ¥): : ' i
(a) Box not touched: L2, ms ¢ -2, ' .
(b) Box at apex of the cone: £ =0, m =0,
\c) Box split by the cone: L=mm>0.

(&) Box touched at two corners by the cone: £ =1, m=0. :
{e) Box touched at one corner by the cone: t>1l,m= 4«1, ;
v' . ' .
¢ In case (2), since there is no singularity, the following quadrature : :
' formula (Equation 25.4.30, Reference 8-9) may be used for both the spanwise ;
and chordwise integrations:
b n '
t(y) ay = 258 ) H e £(y,) (8.35) ‘ .,
2 i i/ ‘ .
a i=1
where
_b-2 x, + b+a
.= 72 %172 4
Xy is the ith zero of the Legendre polynom.al, Pn
Hi’ the weighting function at the ith quadrature point, .
- 2y [pr 2 ;
-2/ - &) [7y (x)] 2. ;
»
!
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In cuse (b), the integration is to be performed only on the triangular
arza of & quarter-box. Hence, reversing the order of integration in Equation

(8.3b), the limits of the double integral become f f , while the limits of
¢ «AX

3
the single integral aref . Since R = O at the limits, Ax and -Ax, and

since R% = R_% n 0 at the limits % and -i-, the spanwige integrals have singu-
larities and a different quadrature formula (Equation 25.4.39, Reference 8-9)
is used:

b
a
£ d
/ e 2 s ©.5)
a =

b ~a b+a

-

Y1 * 72 % T T2
Yy O
x, = cos (21 - 1) 5

Hi = -,-/n.

After the spanwise integration is performed, Formula (8.35) i3 used in the
chorédwise direction.

For case (¢), the integration is done over a triapgular half-box where

- --.~a-1.'mwm:.mw Py

2 AX L
the 1imits of the integrals become f f and f Since the spanwise
-+ Jid =% ®
integrals here have singularities at the upper limits only, the appropriate .
quadrature formula (Equation 25.4.37, Reference 8-9) is: d
b n :
(2n) !
f ﬁ-ﬁ—ﬂ TR 2 ), (8.37) »
-y '
a i=]1 ;
®
T2
®
[ e | .
%
. - 11
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where

yy =24 (b-a) (l-xi)

h

is the it pos. zero of the Legendre polynomial, P2n‘

X
i
(2n)
Hi are the Gaussian weights of order 2n.
Again, Formula (8.35) is used in the chordwise integration.

For cese (d), an integration is first pe.toimed over the triangular
shaded area in Figure 8.4a (comprising boxes b, ¢, ard d) using the quadra-
ture formulae for case (b). Then by subtracting the previnusly derived
pressure influence coefficients for boxes b and ¢, the desired intsgral over
d is achieved.

Finally, for case (e}, the integral for an aggregate area (see dotted area
in Figure 8.4s) consisting of a triangle on the Mach line and the subject area
is determined; and from it the integral for a triangle is subtracted. When the
spanwise integrations are performed, Equation (8.37) is employed, while
Equation (8.35) is used in the chordwise direction.

For case (a) and all chordwise integrations, the present program vses six
integration points for the quadrature. In the spanwise integrations, six points
are used when k < % (%)2, while twelve points are employed when k > % (%)2.

At a given Mach number and reduced frequency, the pressure influence
coefficients are functions of only £ and m - the separation between the sending
and receiving box cz2nters, Consequently, influence coefficients are computed
by the above formulae only once for each admissable £, m pair ( ¢ 2 O,
ms £ ) end are used rep:2atedly where needed.

The pressure on any box is a function of the downwash of only those tores
within the inverse Mach cone emaneting from its box center. For a surface,
the edges of which are all supersonic, the pressure is, furthermore, ealy
influenced by boxes on the planform, If any of the surface edges are subsonic,
however, there are regions adjacent to these edges which do affect, the pressure
‘of some areas on the planform. To account for this effect, the :oncept
(Reference 8-10) of a permeable "diaphragm" is introduced in these regious.
This permaable sheet does not alter the flow nor can it sustain pressure. It
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is bounded by the surface edge and the Mach lines emanating from the corners
: of the lifting surface - see Figure 3.5.

The relationship between the pressure and downwash on the combination of

R P SO L I

the lifting surface and the diaphragm aren can be written:

‘.ﬁ%}. infWP. _"§l (8.38)

‘o | | ¥p ),

RPN, NM.‘IWBQ’;':'W-.”'- e

where

Pw is the pressure on the wing boxes *
PD is the pressure on diaphragm boxes
. 1
Cw are the influence coefficients giving pressures on the wing boxes . ‘

due to downwash on the wing boxes :
CWD are the influence coefficients giving pressures on the wing boxes ; :
due to downwash on the diaphragm boxes %
CDw are the influence coefficients giving pressures on the diaphragnm ? 1
boxes due to downwash on the wing boxes % :
! '
CDD are influence coefficients giving pressures on the diavhragm boxes {. 1
due to downwash on the diaphragm boxes !
wg 1is the known downwash on the wing boxes
wp is the unknown downwash on the diaphragm boxes. ®
Since the pressure on any diaphragm box is zero, then C
[ :
;
ol sl - L

»

’

ard the unknown diaphragm downwash can be evaluated by :
-1 : .
%wnz = - [CDD] {cnw] iwst (8.40) ® :
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Substituting this result into Equation (8.38), ylelds the final expression for ;
the pressures on the wing boxes: <

{feat = [rc)fos} (8.41)

vhere [AI] - [wa] . [cwn] [(:DD].l [cm] (8.42) ~

For maximum computer efficiency, the actual calculation of the pressures,
PH’ is generally performed in a different manner from that implied by Equation ‘
(8.41). The calculation of the aerodynamic influence coefficient matrix, [AIC] :
leads to either extensive use of core in storing matrices or a large number of
I/0 operations if the matrices sre stored on data devices, If there is no neea
for saving the [AIC] array for future use, the machine operations can be

R 'M‘—'—- -

|
appreciably reduced by computing the pressures as follows: .,
(1) {x} = -cm; {ws ’%
L™ ?.
(@) fyi = e X i ;
- (8.43) b @
3) jz{ = o ! :

® {Pw) - [“w ;s} - |

In this way, core storage requirements are minimize2, since only a vector need
be stored in going fram one step to another.

.o v\—\m"t.'mm «W.

»

76 ‘:
»

!

L m e o . s — ey :(

;

3

- - -y -~ ‘ .1
;
. »

o on e - . . .
, . svanraadasitel . . —e—e . e - e -




At NPT PR aras . o

Cace the oscillatory pressures are camputed, the normalized generalized
aerodynamic forces are computed by

- -b2 3
Q, " -e—k-g- f/s/la h.(x, ¥) cps(x,y) ax dy. (8.h44)

Since the boxes are assumed to be very small, the integration can be replaced
by a summation over every box on the planform:

3 b~°-2 L"f'd) ol8) p(8) (8.45)
J
vhere
hf_d) is the deflection of the 3P box in the r'P mode
c(gz) 1s the pressure coefficient of the j°2 box in the s mode

A(J) is the area of the Jth surface box.

It should be noted that each box area is ba/a. The program sutomatically
establishes the gridwork of boxes: From a user specified number of boxes
desired, the program calculates the box size necessary for the boxes to cover
the planform and diaphragm and to elign with the inboard and outboard plenform
edges. Consequently, no boxes overhang the planform side-edges. (Referral

to Figure 8.5 here and in the remaining discussion may be helpful.) Each box
is designated as either a wing box or diaphragm box depending on whether its
center lies on or off the wing, respectively. In general, boxes dg overhang
the leading and trailing planform edges causing, in effect, a jagged represent-
ation of these edges. For most configurations, this jaggedness has been found
to have little eflect on the accuracy of the computed generalized aerodynamic
forces, providing that the box grid is not too coarse. It follows that
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since pressure is assumed cc.stant over each box, wing boxes that overlap
the planform edges support a force on their off-wing portion as well as the
portion sctually lying on the surface. This results in a computed force in
excess of the correct amount. However, diaphragm boxes that overlap the
planform edges support no force on either the on- cr off-wing portions and,

hence, result in a deficit in the computed wing forces that tends to balance
In Figure 8.5, this balance

The shaded area is the

the excess obtained from overhanging wing boxes.
i3 1llustrated for one representative pair of toxes,
off-wing portion of wing box A while the crosshatched area is the roughly

balancing on-wing portion of diaphragm box B.

When a highly swept surface is analyzed for a relatively low Mach number,
the number of forward diaphragm boxes can become so great ag to cause an
appreciable increase in camputing time, However, the downwash in the diaphragm
region decreases very rapidly in the forward stl:eamwise direction. To save
camputing time, the present program takes this rapid decay of diaphragm down-
wash into account and allows the user to request a box-eliminatiorn option
whereby the diaphragm boxes are ignored forward of a user specified distance
ahead of the leading edge.

In the program, provision is made for computing aerodynamic force co-
efficients and center-of-pressure locations. The user may use this facility
to compare known stecdy stete data with computed values to determine the number
of boxes required for a satisgfactory sol ‘tion. Another approach is to vary the
number of boxes and look for convergence in the stability coeflicients.

8.2.3 Subsonic Doublet-lattice Program

For the added capability in the subzonic regime of analyzing control sur-
face configurations, multiple interfering surfaces and interfering surface-body
configurationg, the doudblet -lattice program of Reference 8-11 ig used. The formula-
tion of this method is different from the assumed-pressure-function method tut
starts with same integral equation relating the wash normal to a harmonically
oscillating surface to the lifting pressure:

v (2,) - %ff C(P) Ky, P, k, M) dg d, (8.2)
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where

X, §
¥, 1

z, §

»

S

constant,

-

e e eyt W T N

is any point on the planform, the coordinates of which are £, 1, {
is a Jth point, the coordinates of which are x, y, 2z

are streamwise coordinates

are spanwise coordinates

are vertical coordinates

is the tangential spanwise coordinate

is the normalwash angle = % =+ i% h

(]

"i{s the differential. pressure coefficient

is the kernel function relating the nonsalwash at P 3 to the a unit

pressure at P

is the Mach mumber

is the reference semichord

is the vertical displacement of the surface

is the streamvise slope of the deformed surface
is the reduced frequency

is the surface area of all lifting surfaces included in the analysis.

If the surface ic divided into J elements over which the pressure 4s sssumed

the previous equation becomes

J
w(x, ¥, 2) = gl,;ch ffK (x-€, y-M, 2=, w, M) d€ da. (8.46)
3=3. jmmsn'r

J
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Nex’ , the pressure is assumed to arise from a loaded line at the &-chord
of each element. As illustrated in Figure 8.6, this 1is equivalent to an un-
steady horseshoe vortex whose bound portion lies along the 1.chord of the
element., The resulting expression is:

J
. (x» Y, z) = 8"2 C Aga ,/K (X'h: ¥-T, z-{, uw, M) do, (8.L47)
| 3= ELEMENT .

J

wvhere A€, ig the length of the average chord of element Jj, and the intezgration
is taken elong the &<hord line of the ;1 element.

lattice Element

Collocation Point at
Element 3/L4 Chora

G

u Trailing Vortices

B s o

\ / C
Bound Vortex
at Element 1/L4 Chord

Figure 8.6. Horseshoe Vortex Element Used in
Doublet-lattice Method.
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If “he downwash is calculated at points located at the 3/4-chord midspan
of each of the J elements and the above equation is satisfied at each of these
points, the follmring set of equations holds for 1 = 1 to J:

J
Wi ® E%ECPJ a8 /K ("i‘%’ ¥~ 2465 w M) do. (8.48)
=1 ELEMENT
3

This can be written in matrix form as:

{w} - [5) {cp}, (8.49)

where Dij relates the downwash at the ith point to the pressure over the Jth

element. By solving this set of linear equations, tre pressure distribution
over the surface is calculated.

Because the doudblet lattice method is not explicitly fitting pressure
functions on a planform as is done in the assumed-pressure-function method,
multiple aerodynamically interacting surfaces can be modelled by simply de-
fining lattice elements on each surface. In this case, Equation (8.148) still
holds, but J is now the number of elements on all surfaces.

To account for eserodynamic interaction between bodies and surfaces,
Reference 8-11 describes a method of modelling each body by axial doublets
along the body axis and by panels of unsteady horseshoe vortex elements on
the body surface in the vicinity of each lifting surface with which the body
might interact (see Figure 8.7, for example). The strengtih of each axial
doublet is calculated by slender body thecry. The incremental downwash on
the panels on the body surfaces and on the liftiné surfaces caused by these

axial doudblets is then computed and subtracted from the prescribed downwash
for these surfaces. Equation (8.49) becomes
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cp(S) is the pressure coefficient distribution on the 1ifti g surfaces

is the pressure coefficient distribution on the interzcting body
surfaces

is the pressure coefficient distribution on the slend~r-body
axial elements

Wg is the downwash distribution prescribed on the lifting surfaces

wr is the downwash distribution prescribed on the interacting tody
surfaces

FSB is the downwash distribution on the lifting surfaces caused by unit
pressure coefficients along the slender bodies

1B is the downwash distribution on the interacting body surfaces caused
by unit pressure coefficients along the slender bodies
¥

Dss is the downwash distritution on the lifting surfaces caused by unit
pressure coefficients on the lifting surfaces

DSI is the downwash distribution on the lifting surfaces caused by unit
pressure coefficients on the interacting body surfaces

DIS is the downwash distribution on the interacting body surfaces caused
by unit pressure coefficients on the lifting surfaces

it

DII is the downwash distribution on the interacting body surfaces caused
by unit pressure coefficient on the interacting body surfaces.
Since ’ Cp( ) ; wag calculated fram the downwash and geom~try of each body using
B
slender-body theory, the only unknowns in this matrix equation are icp( ) } and
s
Cp( )% . This set of equations is solved for these pressure distributions by
I
a standard linear system solution algorithm using Gaussian triangularization
and back solution (see Reference 8-3, pp 428-429), ’

pop = TS
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Orbiter Fuselage

Soljd Rocket Booster (SRB)

External Tark (ET)

Slender Body
Elements [}

Figure =.7. Aerodynamic Model of 2 Space Shuitle Using the
Joublet~lattice Method.
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As in the Mach-box method, generalized aerodynamic forces arising from
Jifting surface pressures are caiculated by

) J
= _ ¥ (3) (3) ,(3)
Q= hv’ ¢t/ (8.45)
TS 2 r P ’
2k =1 s

where, here, A(J) is the area of the Jth element. This can be rewritten in
matrix form for all N modes as:

[-20HE e

(1) (NxJ) (3%I3) (Jxw)

o

where tﬁ\] is a diagonal matrix. When interacting bodies are present, three
generalized forves are present:

[5] = [63 +Q 63] (8.52)

The first arises from the praduct of deformations, pressures and areas of the
lifting surface elements; the second from the product of those of the inter-
acting body surface elements; and the third from the product of those of the
body elements - the appropriate areas in this last case are the products of the
body element diameters and le.gths.

To obtain satisfactory pressure distributions, the lifting surface must
be divided into strips of elements whose edges are parallel to the free stream.
An example is shown in Figure 8.8. Additionally, element edges should lie along
surface edges, fold lines and control surface hinge lines. Three guidelines
should be observed in subdivision:

(1) The leading and trailing edges of adjacent pairs of elements should
be aligned and located at a constant percent of the strip chord when
possible.

(2) The dimensicns of elements should be decreased in the directions and
regions of large gradients in pressure and/or dowrwash, such as near
hinge lines, leading edges and wing tips.
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Figure 8.8. Doublet-lattice Modeling of a Delta Wing with
Crenked Leading Edge and Two Control Surfaces.

(3) The aspect ratio o1’ each element should be unity or less. However, ,
this is not always possible, especially in regions where a large i .
pressure gradient is expected. This is evident in the example ’ - 4
shown in Figure 8.7.

The optimum configuration is predicated by the need for keeping the number
of elementg to a minimum and at the same time generating generalized air force ‘
verms that are satisfactory for flutter analysis. It may be necessary to test P
a nurmber of trial configurations and compare results before making a final o "‘»
analysis with a fixed element layout. ]

8.2.4 Modal Interpolation

, 'Y
For each of the above aerodymamics routines, the normalwash angle is
{ required at specifiéd aerodynamic grid points on the liiting surface: i
i
| -
vy
i X
wij T = aid + i bo hij, (8.53)
!
|
|
85
®
®




=T

SEESSS e

v
t
f

2

where ai3 and hid are the sztrearwise slope und the disrlacement of ncint i in
-
the j“h vitration mode, Since ihe modal data from the vibration analysis is

syecified on 2 dynamics grid which, in general, does not cnincide with the aero-

dynamics grid, an interrolatiorn is rewired. The procedure used consists of
regresenting the dynamics grid as a set of spanwise oriented lines connecting
tide points at which modal deflections are specified. These deflections are
intervolated along the lines to each spanwise station at which aerodynamic
grid points lie 2nd then are intervolated chordwise along aach such station to
each serodynamic ¢rid point. This scheme is fllustrated in Figure 8.9,

Spanwise Lines X Inpus (Vibration)
Connecting Input Grid Pcints
Grid Points ® Aerodynamic
Grid voints

Root Chord

Tip
Chord
N, \
Chordwise Lines O User Prescribed
Through Aerodynamic Limits of
. Grid Points Spanvise

Interpolation

Figure 8.9. Modal Interpolation Scheme.

In a variation of this scheme, available as a prcgram onticn, modal
stresrwise slopes, as well as deflections, are spegified ag input dzta along
2 single spanwise line., The program then creates a second line parallel to
ard at 2 specified strearwise distance from the specified line and transforms
the modal slopes and deflections to a set of deflections along each line:

86

o ——— s m————
K - : e NS T 5N e s e . PN e r———————-
‘. . - P

w - <

w

e R T R

T A A A, s g S




R TS e
4

[ ]

]

ot

[]

1]

L]

.N

$ -

3
AN

.‘—‘

[ ]

{

wh

n

where
hl} and ay ¢ are tne deflections and stresmwise slores nprescribed
alo"g the first line
{ h2 } are the deflections camputed along the second lire
I\] is an identity matrix
é\J is a diagonal matrix having the specified separation between

the lirnes as each of its diagonal terms.

Using this set of lines and deflections, the interpolation proceeds accordirg
to the original. scheme,

-For a surface with a control surface or some other special region across
the boundaries:of which the -modal deflections are rot contimious, an option i3
available whereby the interpolaticn is performed over the main surface and over
the control surface(s) separately tsing separate sets of lines and node points.
In this manner, modal discontinuities across the bourdaries are preserved.

- The '‘cnlculations performed in the abtove schemes use the lagrangian inter.
polation formula of Reference 83, pages 60-68. Accordingly, a polynomial, g(x),
is determined as an agproximation to a fwiction, f(x), the value of which is
krown at eanch of i+l points, {xo, X3 eoes xz;}. This polymomial is computed

by

{x=x ) ees (x-xk ) (x= Xy i) ves (x-xx) i
S(X) 32 (x "xoi e \xk xk-l) Txk k-l) e {xk-x‘:;) f(xk). (:.55)
k=0

In the present program, “he polynomial, g{x), is limited to degree i = 3 to
ninimize convelutions in the approximation. Conseqiently, in cases for which
the modal deformations are specified st more than four roints spanwise or chord-

wise, the arproximation is a piecewise-contimious cudic polyromiazl, As 2 prosrawm
option, the user can Duther resiriet the polynomial to a linear or parabolic
function in regions where extrapoiation is needed either spanwise or chordwise.
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3.2.5 Miltiple Surface Capabilities }
}
in the doublet-lattice procedure, multiple aerodynamicalily interacting g‘ .
surfaces mny be trented 25 descrited in Section 8.2.3. Although the Mech box i @

procedure auxi the assumed-pressure-function procedurs«s do not account for

interaction effects, these methods may be used to anslyze 2 multiple surface

vehicle where nerodynamic inferaction ic 1ot present. This is achieved by (su
calculatiny the generalized nerodynamic force contributions for each of the

vehicle lifting surfaces and =2dding these tcgether before passing them to the

flutter solution routine. ~dditionally, the user can request that the aero-

dynemic forces of a particular surface be multiplied by a specified scalar

befiare the addition is made, so that empirical knowledge of the actual 1ift »
of 2 surface as compared to its calculate’ value may be reflectec, )

8.3 GEUERALIZED AEKODYNAMIC FORCE INTERPOLAT.ON

For a flutter analysis, generalized serodynamic forces are required at
several reduced velocities. To reduce the computation time needed to obtain
these forces, interpolation is uged %o determine the generalized aerodynamic

forces at all desired reduced velocities from forces directly computed at a
small set of selected, reference reduced velocities. A separate interpolation i

is performed on the real and on the imeginary part of each term of the general- » @
ized aercdynamic force matrix. As in the modal interpolation of section 8.2.%4,
lagrangian interpolation (Reference 8-3, pages 60-68) is used and the approxi-
mating function is limited to a plecewise continuous second- or third-order
polynomial. :

In the present program, the user supplies a govdness-of-fit tolerance 42
and six reference reduced velocities ordered by increasing value and distribute '
over the range required in the gsibsequent flutter analysis: [vl, Vgs e v6}
Using generalized forces computed at three of these six, a generalized aero-
dynamic matrix at a fourth is determined by interpolation and cumpared with a »
matrix of generalized forces directly computed at that reduced velocity. The

*or

comparisons are performed for various arrays, C, formed from combinations of

the terms of the generalized icrce matrix and take the form of the test:

38
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abs(;ecu - ey )
computed Iinterpolated .,
p“ g‘" 23 = tolerance, (&,56)
computed

where {l C ! is the Buclidean nomm - defined as the square root of the gum of
the squares of the terms of array, ¢, This test is made separately for ¢
chosen: as:

"(1) the entire generalized force matrix, [5]
(2) a vector of the main diagonal terms cf [a]
and (3) each successive two«by~two matrix formed sbout the main diagonal
of [3].
If any of the above tests fail, the computed forces at the fourth reduced
velocity are added to the interpolation besis; and tests are made at a fifth

reduced velocity. The procedure is continued for 2 sixth reduced velocity
if necessary. A summary of the tests performed is presented below in Tabdle 8.2.

TABLE 8.2, TESTS PERFORMED FOR GOODNESS-OF-FIT IN GENERALIZED
AERODYHNAMIC FORCE INTERPOLATION

INDICES OF COMPUTED
ARRAYS USED FOR INDEX O%F TEST FAILURE
 TEST INTERPOLATION TESTED ARRAY LEADS TO
A 1, 3, 6 2 Test B
B ,2,3,6 4 Test C
¢ 2,3 4 6 5 Use of all computed
array in the ac:inal
interpolation

After the goodness-cf-fit tests have been made, the procedure for
obtaining generalized forces at any selected reduced velocity is summarized
in Table 8.3.
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TABLE §.3. GENERALIZED AERODYNAMIC FORCE INTERFOLATION
TROCEDURE IN VARIOUS REDUCED VEICCITY RANGES

RANGE TEST A TEST B TEST C TEST C
) PASSED PASSED PASSED FAILED
Extrapolation Lxtrapolation
vev using parabulic| usirg parabolic
1 fit through it through .
Ql’ Q3) Q6 Ql) %’ Q3
Interpelation Interpolation Interpolation
v.SVSY using parabolic | using cubic using cubic
1 2] fit :c_hroy_gh fit through - fit through -
QG Q3 Y Qs S Q3: S Q, @ B Y
Vo5V sv'.’
Interpolation Interpolation
V.SV £ using cubic using cubic
3 % fit through _ | fit through _
%% Y % | B G 9,
v, Sv Svs Interpolation
. using cubic
it through _
% @ &) §
) Sv e,
i Extrapolation Extrapolation Extrapolation Extrapolation
H ey using parabolic | using parabolic | using parabolic | using parabolic
| 6 it through fit through it through fit through
! Qi: Q3’ Q6 Qé’ Q3’ Q6 Q3, OJp Q6 le QS’ %

* Note: v, = (1/%) 4 ordered by increesing reduced velocity
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Ir choosing the reference reduced velocities, the following considerations

should be observed: ®

(1) For the computed aerodynamic forces to be most accurate, the Jowest
reduced velocity should 18 high as possible consistent with the
range of values needed for the flutter solutions.

(2) Gererally, the first and sixth reference reduced velccities shovld
span the expected range of v for which gereralized aero forces are to
be calculated. This precaution eliminates the need for extrapolation.

(3) The reference reduced velocities should emphasize regions where
flutter is expected, ®

8.4 FLUTTER SOLUTIOil PROCEDURES

There are two solution options available to the user foi the flutter
analysis:

(1) the conventional k-method, using the QR algorithm (Reference 8-12,
peges 515-568) to determine eigenvalues.

(2) the p-k-method, using a determinant iteration procedure with a
quadratic predictor (Reference 8-12, page 435) to determine

g~

eigenvalues.

Generalized aerodynamic forces required at various reduced velocities in these )
analyses are usually determined hy the interpolation procedure described in P
Section 8.3, However, if the user desires, directly computed aerodynamic

. ®

i forces can be used in the k-analysis. To help the analyst study the flutter R

' mechanism, verious options such as the automatic preparation of plots of modal e
structural damping and frequency as functions of airspeed are available.

f If the redesign capability of FASTOP is to be used, the p-k flutter
analysis must be selecte, in which case various items such as the flutter P

vectors are computed.
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8.4,1 Flutter Equation

The basic differential equation for a lifting surface in oscillatory

| [m] l q } - [Q] {q } + [x] {q } =0, : (8.57)

[’4] is the generalized mass matrix,
[é] is the generalized serodynamic force matrix,
[ﬁ] is the generalized stiffness matrix,
{q‘ is the generalized coordinate vector,
The generalized aerodynamic force matrix equals the product of the aero-

dynamic matrix, [A], and the dynamic pressure, épUa, where an element of [A]
is defined as:

Ars "f!hr(ib ¥) cp(s)(x’ y) ds, (8.58)

where her, ¥) is tre deflection distritution in the ret mode, C (x, y)

P(s)
is the pressure coefficient distribution in the zth mode, and the integration
is performed over the lifting surface area, S. Hence, Equation (8.57) can be
rewritten as

WG e e

If structural damping is present in the system, the generalized stiffness

array should be modified as:
[i] = [I + 10] [K], (8.60)

- o v 0t .




where [GJ is a diagonal matrix of modal damping and [I] is the {lentity matrix.
The stiffness in the Jth mode is then

K3 =(1+ 1gs(d))x“, (8.61)

where ss( 3) is the hysteretic or structural damping in the .jth mode, Then
Equation (8.59) becomes

[ (3] -5 [ (o) - ] (o] - o (5.62)

Fer harmonic motion, the generalized coordinates may be written as

‘q } = {?f} e"'t, where E is time independent and ~ may contain damping.

Equation (8.62) can then be rewri*ten as:

[aa [M] - 2';. [A] + [Kﬂ { E} = 0. (8.63)

8.%.2 k-Method

In the "American approach” (or k-method), since the conventional aero-
dynamic theories are valid only for undamped oscillations, the aerocdynamic
matrix is computed for a chosen reduced frequency, k, and the a is considered
to be undamped (n = 1w):

[ [] bo? [ A(k; + ]{ } _ (8.64)

This equation may be rewritien as

I-_ [A(k)] { } -0, (3.65)
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where the reduced frequency is deflired as

K= 22,
where
b is a referer-’ gemichord
w is the frec.:cy of oscillation

U is the velocity of the free stream.

(8.66)

Now, an unknown hysteretic structural damping term, g, is introduced to
bring the system into neutral stability. Applying this damping to the :jth

diagonal term of the stiffness matrix of Equation (8.65) results in:

X' = -l'- +
K= (" tean tg) Kyy-

(8.67)

For small values of damping (g~gs( 3 )<<1), this Jth on-diagonal term may

be approximated by

=! 1+1ig
Kjg = ( 2 )(1 ”gs(a)) K397

= (1 teygy) Kyy =0 Ky

where

xz-lé-(1+ig).

w

Substitutior in Equation (8.65) yields

— b2 . -
2 [{] - [ - 2 o] | (3} -
2K
Defining the aerodynamic term ai Q (k), this becomes

[» [ - [u+ 3] {i}=o.

=1

+
5, LI T L

(8.68)

(8.69)

(8.70)

(8.71)

(8.r2)

P ..a,-.qum, e




Solving this equetion for each eigenvulue, A, one obtains the values of the
unxnown damping and the accompanying w of the system, A positive valie of
the demping means trat structural damping must be added to the system to biing
it Lo neutral stability; i.e., the system is unstable, A negative value has
‘he opposite interpretation.

A flutter analysis by the k-methol begins with the calculstion (or inter-
polation) of generalized aerodynamic forces, [a(k)], for a chosen set of reduced
frequencies. Using the QR algorithm of' Reference §-12, p;ges 515-568, eigen-
values are determined from Equation (8.72) fur each reduced frequency. Usirg
Equations (8.70) and (8.66), the reduced frequency and the real and imaginary
parts of each eigenvalue are converted to a frequency, & required darping, ard
a free stream velocity., By plotting these dampings and frequencies as functions
of these velocities, the critical flutter speed (the lowest nonzero velocity at
which g = 0) and the accompanying flutter frequency are determired,

Having derived the eigenvalues of Equation (8.72), the eigenvectors are
determined using ar inverse iteration procedure (Reference 8-12, pages 619-£25).
These are used to establish the uniqueness of the eigenvalues in a routine using
the Gershgorin theorem (Reference 8-12, pages 638-646).

Because of the assumptions implicit in this approach, the subcriticsl darp-
ing and frequency trends are generally inaccurate, Occasionally, the methou
rroduces & rultiple valued function of damping vs. velocity, making it difficult
tc order the roots in a routine to automatically determine the flutter speed.
The advantage of tkis approach, however, is its speed; solutions to linear
eigenvalue problems are relatively easy to c&mpute.

8.4,3 p-k Method

An alternate approach to the solution of the flutter equation, which gives
better subcritical trends and does not lead to double valued functions of damp-
ing vs. velocity, is the p-k method of Reference 8-1. The gereralized coor-
dinates are assumed t> be damped harmonic functions; hernce, a be:iomes

a=c riw

: u
or aefven-go (.73)
& »
»
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where v is the dumping coefficient equal to 5% in ;'l (with 8, and B, &S the
: g v n '

arplisudes of succeisive eyeles of oscillation). Eguation (8.63) then becomes

[(%)2 2 [M'] . [?] . Eg_z_ [g(k)]] {’a } =0, (8.74)

where the available constant amplitude (undamped) aerodyramic theories rust
be used to compute the aerodynamic matrix,

Unlike the k-method, an air speed U is row selected for which Equation
(8.74) will be solved. The chazacieristic equation for the eigenvalues, b,

is then written as

o, 1 = | () 2 [u]- [7] - L[] = e (8.75)

In Reference 8-1, this equation is solved for p by the iterative Hegula Falsi
method. However, it is noted in that reference that chis algorithm, which
uses a linear predictor, occasionally exhibits nonconvergence. Consequently,
ir the present program this algoritim is rerlaced by Muller's method

(Refererce £-12, pages L35:438), which employs = quedratic predictor. This
neans that each root «stimate i{s a function of the most recent three estimates.

a prepdring data for the p-k solution ortion, the user - by specifying
ar. initial sirspeed, 2n airspeed increment and the total numbter of zirsveeds
for which solutions are desired - defires the velocity range over which the
flutter solution ls to be determined. At the irnitial velocity, the program
makes three estimates of each root, calculates corresgonding generaliced
serodyramic forces and comzutes ¥, the flutter determinant of Equstion 3.75),
for each estimate, After fittirg a quadratic to the three ¥'s, the progrem
determires the value of the root for which this quadratic equals zero. This
value tecomes the rnext estimate of the root. Usirz the three most recent root
estimates, this iteration is cortinued, determining rnew estimatas, “hen the
iteratior hus converyed, the nrocess is corncluded for this root 213 herin for

~he rexs.
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Figure 8.10. Typical p-k Flutter Solu*.cn,
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Solutions are determined for each specified veloucity in the user-d2fined
range, using roots determined at the previous velocity as initial estimates
at the next velocity., Optionally, the user can instruct the program to obtain
the initial estimstes by extrapolation from roots at the previous two velocities,
Whenever significant changes in the slope of the damping or frequency are
detected over the user-defined interval, the program automatically obtains
solutions at finer velocity increments. (See Figure 8.10.) Finally, when a
sign reversal in the damping part of the root occurs between consecutive
velocities, the program initiates a search to determine the veloeity for which
the damping is zero, i.e., the flutter speed.

8.4.4 Flutter Aralysis Features and Options

To help the user study the flutter mechanism, the program allows fer the
variation, 1» a single computer submisslon, of the stiffness of a chosen mode
and of the number of normal modes {from an original set) included in the
analysis. Furthermore, the flutter results - root damping and frequency as
functions of airspeed - are presented in graphical (print-plot) form as an
integral part of the computer listing. In acdition, there is provizion for
obtaining CALCOMP plots of the flutter solution.

Another option is %he provision for llstiing modal components of the eigen-
vectors (flutier vectors) for a given velocity or reduced velocity range
(depending upon whether the p-k or k method ix used for the solution). If
requested by the user, the equivalent physical-ccordinate vectors at the
locations specified by input vibration dats are also calculatzd and displayed.

Optionally, the user can make changes to the terms of the fiutter
equation by adding structural damping and by reviging the generalized inertial

or stiffness matrices.

A divergence analysis can also be performed, using the aerodyaamic forces

derived from a non-oscillatory condition. In which case, Equation (8.59) becomes:
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Both [A]and [K] are real matrices and the eigenvalue to be determined by the
QR algorithm is ? in this case, If no positive eigenvalues exist, i.e,, if
U2 s 0, the surface does not diverge; otherwise the divergence speed is the
square rooi of the lowest positive eigenvalue,

8.4.5 Flutter Vectci: for Redesign

When redesign is to be done in FASIOP, the flutter vector (among other
quantities) is required. The flutter vector is the eigenvector of Equation
(8.74) for the critical root at the flutter speed - the lowest non-zero speed
at which the damping (the real part of the root) is zeru. As described in
Section 8.4,3, the progran automatically searches to determine the flutter
speed, The eigenvalue p, of the critical root at this speed is determined
and the corresponding eigenvector, *u } (the flutter vector), is fourd by the
inverse. iteratica technique (Reference 8-12, pages 619-625).

By transposing the flutter matrix of Equation (8.75) and determining
another eigenvector for p, the associated row vector, {v F, is obtained.
Subsequently, the following parameter is formed Tor use in the computation of
the flutter derivatives (see Section 9):

ca 1 (8] 1u1 ] on : (8.77)
w [T [R] 1]

where Q wes defined by Equations {8,71) snd (8,72). The dertvative g—s

is obtained by differentiation of tne generslized aerodynamic force irter-

polation polynomisl, described in Section 8,3,
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- to - Section 9

. RESIZING FOR COMBINED FLU™TER AND
; STRENGTH RFQUIREMENTS ‘

L 9.1  SUMMARY

Several metheds for sizing the finite elements of a lifting-surface struc-
tural idéalization to achieve minimum welight design under combined strength and L
flutter-speed requirements were developed and evaluated, Iwo basic categories [
were considered: methcds basdd on a cambination of energy principles and opti-

Toreriny rr wisex

fality criteria, and procedures employing numerical-search techniques. Drawing ’
i upon the experience Zained from studies of both of these bdasic methods, a re- )
: -sizing algoritim was developed that employs a uniform-flutter-velocity-lerivative ; .
. optimality criterion for flutter-critical elements and the fully-stressed-design ;
‘ criterion for strength-critical elements. The final result ‘is a practical, auto- b :

i mated approach for dealing with large-scale idealizations having both structural
i and masz-balance design variables.

Tds sectlior provides o summary of the major findings from the evaluation
of the candidate {lutter res!zing methods and the factors that led to the selection,
of the final algorithm, which is discucsed in detail. A more complete description » .
of the methods examined, their underlying theory and assumptions, and the results '
they produced for a repvesentative example wing structure are presented in Refer-
ence 9-1. y

9.2 EVALUATION CF FLUTTER RESI- t™NG ALGORITHMS

For a structure subjected to a single flutter-speed constraint, and no L
other constraints such as those imposed by strength and minimun-manufacturing- s ,

gage requirements, it can be shown tiat for a minisum-weight design, the deriva-
tives of the critical flutter speed, Vg, with respect to the design wariable
weights, my, must be equal; that is '.
V.
3 . constant {9.1)
amy
for all "1" structural finite elements and mass-balance weights.
This "optimality criterion” provides a standard of local optimality under F
the limited condition of au single design constraint. However, realistic struciural f
) »
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Teal value. it must be possible to satisfy such a composite criterlon by a practi-
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designs- involve many constraints in ccubination (e.g., strength, flutter speed,
minimum zarufacturing gages) and their respective, separatelycgoverning opti- o
mality criteria must be blended into a camposite eriterion. Moreover, to be of »

¢a) and efficient resizing procedure. These considerations have strongly influ-
enced the develomment of the cambined flutter/strength resizing algoritihm in
FASTOP,

The finally selected approach evolved from an extensive study of twe
clasges of optimization methods. The first included optimality-criteria methods
based on energy concepts; the second emphasiz~d direct weight reduction Ly em-
Ploying -numerical-search methods. For comparigon purposes, all of the ~andidate
procedures were applied to the intermediate.complexity-wing structure describded
4in Subsection 11.2.1. The objective was to resize an initisl fully stressed,
strength-governed design to ichieve a 30% increase in rilutter speed with a minimum
incresse in weight. The following paragraphs summarize these study efforts and
provide the background that led to the Final resizing algorithm.

9.2.4 Energy-Sased Optimality-Criteria Methods -

Althouh it was recognized early in the study that optimum resizing to in-
crease flutter spoed shoud aim toward achievirng uniformity among the flutter-
velocity derivatives of all resized elements, it was rot evident that a simple
resizing equation could be formuluted for satisfying this criterion. Becauge of .
the rather complicated nature of the expression for these derivatives, as pre- ﬁ
viously developed by Rudisiil and Bhatia in Reference 9-°, it was felt that it : .4 I
would be difficult, if not impossible, to devise such an equation. ‘
reasoned that for practical resizing of very large structur. 1 id2alizations, some
flutter-rcsising procedure that embodied the same basic simplicity as the fully-
stressed-design arzproacn for strength resizing should te developed, even if it was ®
Aiong these lines,

Tet, it wae

necessary to compromise the correct optimalivy oriterion.
several procedures based on ajsproximate optimality criteria ani simple energy-
Thwe hope here was that
even if the correct criterion was not setisfied, the resuliing d-+£ign would still
be efficient, a2lthuugh not optimum,

based resizing equations were conceived and examined.

The tvo simplest versions of these approximate methods were identified as
the "torsi. mode fully stressed design” and the "flutter mode fully stressed

s
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: design"” procedures. They were selected for study mainly because vhsy could be
- integrated very simply into an existing fully-stressed-design program by the mere

addition of pseudo-load conditions, acting along with the actual applied loadirg
conditions, in the resizin, process. The firsi was based on assumed proportion-

: ality btetween the fundamental torsional frequen:y and the flutter-ipeed, and

attempted, in an approximate way, to optimize i'or torsional frequency. It used a P

properly scaled set of inertial loads in the torsion mode as & single additional !

pseudo-loading condition. The second method used a set of inertial-plus-aero-

dynamic loading conditions based on {he complex flutter mode. In both methods,

.y -~

resizing for strength and flutter-speed requirements was performed simultaneously,
30 that interaction between the tws requirements due to internal load redistri-
bution was achieved automatically.
. Two somewhat more sophisticaied, tut still approximate, procedures sought
to achieve "uniform frequency derivatives in the torsion mode” and "unifoim mean- b

strain-energy density in the flutter mode.” The firat of these approaches still
relied on assumed proportionality detween flutter speed and torsional frequency,
it treated the frequency-optimization problem in a more exact way than in the
previous torsion-mode fully-stressed-design approach., The second method, which ‘ ;
received previous attention by Siegel in Referer.e 9-3, resized all flutter-criti- S .
cal elenents so as to obtain equal values of averzye strain energy per unit weight # ’
during a flutter-oscillation cycle.

Three of the above methods led to converged designs that gzatisfied the re-
quirement of a 30% flutter-speed increase with approxiuiately the same increase in
structural weight. One method (the one which attempted to achieve uniform fre- P
quency derivatives ir the torsion mode) behaved so poorly that resizing was aborted
before reaching the desired flutter speed. To evaluate the final results for the
converged designs, the flutter-velocity derivatives of the elements that were re-
sized to meet the flutter-speed requirement were calculated and examined for uni-
formity. The conclusion v < discouraging in that no tendency toward uniformity
existed, and no confidence could be placed in any of the methods, Concurrently,
results from parallel studies (discussed in the next subsection) that used numeri-
cal-search techniques in conjunction with fluttor-velocity derivatives confirmed
the existence of significantly lighter designs than those obtained with tte
previously discussed approximate optimality-criteria methods.
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-‘Although none of the preceding mechods were acceptable in themseives, the
knowledge gained from their development belame extremely valuable. All of the
methods émployed -energy-type concepts - both in establishing their approximate
optimality criteria and in-obtaining simple and effective resizing foramulae for
satisfying these criteria. It ther became evident ‘that by extending these envrgy
concepts, it was vos~lble to cast the expression for the exact flutter-velocity
derivatives of R.f..: :.ce 9-2 into a new form that wag identifiable in terms of
generalized -eriergy quantities. Moreover, it was also possible to obtain a simple
strain-energy-vased resizing formula for achieving the desired state of uniform »
flutter-velocity derivatives among structural elements. ‘

P

X e .

When the formula was applied to the example wing structure, the tinal. de-
sign achieved the required 30% increase in flutter speed with a weight increage of
only-about one-fourth of that required by the previous methods. Also, it was ob-
served that at each intermediate design step in the oversll resizing process, the
flutter-velocity derivatives of the flutter-critical elements exhibited a high
degree of unifommity, thereby demonstrating that the resizing formula embodied
excellent convergence charactsristics. Nevertheless, since the method relied on
strain-energy-related quantities, an additional or more general redesign formula
was needed to corsider mass-balance variables., The numerical-search methods dis-
cussed next, 25 well as the finel method selected for use in FASTOF, have the
capability for dealing with mass balance,

o T g

9.2.2 lumerical Search Procadures

Paralieling the evaluation of the erargy-bas~d methods was the development .
ard study of severzl numerical-search procedures that all employed the previously ,
reforenced expression for the precise rlutter-velocity derivatives. A major dis-
tinction betwzen these procedures and thuse already discussed is that the numerical-
search methols do not rely on the definition and enforcement cf an optimality eri- -
terion. Inste.l1, concepts of travel in design space are employed to seek out a
near-minimum-we.tht design that satisfies the flutter-speed constraint without
compromising strength requiremerts.

o T

Of the four rumerical-search procedures studiea, the first two were in the
category of procedures for initially achieving the desired flutter speed. The

latter two were techniques for minimizing structural weight after the fiutter .
speed target was achlieved. A complete vesizing method required that procedures ; )
t
4
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{n Loth categories be used sequentially.

L e -y ——————. T DT NTR

In the first category, the "flutter-velocity-gradient redesign” procedure
was & straightforward appinach that sdded increments of weight to structural ele- g
ments in proportion to their flutter-velocity derivatives. Theé second procedure, e‘
"weight-factored-gradient redesign”, was a refinement of the firat, wherein the b ;
incrementel weight added to each element was factored by the element's total ’
weight., This was done in order to arrive at the desired flutter-speed constraint
surface with a lower-weight design than thet odbtained in the previous method,
which tended to add excessive weight to the lighter structural elements. Both
tectiniques were applied to the intermediate-complexity-wing structure in a step- .
by-step resizing mode, a_rrivir.g at the desired flutter speed with much smaller
increments of structural weight than any of the previously described approximate
.optimelity-criteria methods.

To then travel along the constraint surface to a minimum-weight design point,
a "biased tangent" approach and the "method of feasible directions” (see References ®
9. and 9-5) were each employed separately, starting with the last design obtained
by the flutter-velocity-gradient redesign method. Both procedures led to final
designs having essentially the same weight as that achieved by the lagt energy-
based optimality-criteria approach that eims for uniform flutter-velocity deriva-
tives, However, although both procedures yielded good results, considerable
difficulty was experienced in developing an efficient automated step-size deter-

o
M.

mination procedure. )

In summarizing the findings of these numerical-gearch studies, two major
points should be noted, First, the requirement for a two-phase redesign operation,
coupled with the problem of step-size determination, led to the conclusion that it
these procedures are computationally inefficient and not readily amenable to com- ;
plete autaaation. Second, the biased-tangent and feasible-diresction methods yield
the same design a3 that achieved by the energy-based resizing method that aims for
uniform flutter-velocity derivatives, thus giving added confidence in the superi-
ority of this optimality criterion.

S

e T T

9.3 THE SELECTED FIUTTER RESIZING ALCORITHM

From the results of the studies described in the previous subsectien, it was
concluded that the finally selected flutter vesizing algorithm should be a direct
rather than a two-phase procedure that achieves a state of uniform flutter-velocity .
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derivatives for flutter-critical elements, Moreover, for the overall problem of
determining a near-minimum-weight design that satisfies both strength requirements
and a minimum flutter-sieed constraint (for one critical flutter mechanism), the
resizing procedure shoul! aim toward a composite optimality criterion with the
following characteristics:

o Flutter-critical elements have uniform fiutter-velocity
derivatives for the Mach number and altitude of the prescribed
critical flutter condition,

o Strength-critical elasents are fully stressel or at leact one
of the specified desi;g1 loading conditions,

e Other elements are at & winimum or maximum menufacturing gage.

To achieve the uniform-fl:.:¢1,er-velocity-derivative criterion, the
following resizing formula is uged in FASTOP:

) (9.2)

h

m are the 1% design variable (structural
element or mass balance) weigiits before
and afier a resizing step, respectively,

is the flutter-velocity derivative of the
th
i

step, and

@Vg/amy ) oyq
design variable bvefore a resizing

is an approximation of the desired
uniform positive value of the derivative
after a resizing step, to be discussed
in Subsection 9.4.1,

(avf/ami)target
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This formula resulted from a simplification of the equation that was used in 4ne
last of the energy-based optimality-criteria methods discussed earlier, It,
however, does not suffer from the shortcoming of its precdecessor, in that it is
mathematically capable of dealing with mass~balance as well as ctructural design
variables, When this resizing technique, hereafter referred to as the "velocity-
derivative-ratio method," was applied to the same example wing structure used in
the previous study efforts, it displayed excellent convergence characteristics,
rapidly leading to a desjgn requiring the same weight increase as those obtained
by the best energy-based method and by the numerical-search procedures, When mass-
balance design varisbles were introduced into the example problem, the ability of
the method to cope with this type of variable, in combination with structural
design variables, was also verified, The results of further demonstrations of

the application of this method in optimizing realistic structural designs is
presented in Section 12,

9.3.1 Calculation of Flutter Velocity Derivatives in FASTOP

As stated previcusly, in the lat "or part of Subsection 9.2.1, it became evi-
dent in studying the energy-based optimality-criteria methods, that it is possible to
cast the analytic tlutter-velocity derivatives of Reference 9-2 into a new form that

is identifiable in terms of generalized energy quantities, The development pro-
ceeds as follows:

Consider the flutter-mode vector (U} and its associated row weetor {V} T,
in the structures mathematical .model, to be normalized such that
(vIT(e + (ADU) = 1. (9.3)

Rudisill and Bhatia's final flutter-velocity derivatives (Reference 9-2)
may then be expressed in tvhe following form:

av \')
Sf = ;%’-[g Re ({v}T(a[}cJ/am1 - w§ 3[4)/3m, 3{u})

In (V) [a(K1/am; - wd(M)/3m,](V))
In(u3(v}" (3[A]/3K)(U})

w2 . u:2
X (-511 Re ({V}*(3[A}/3k){U}) + -f-) . (9.b)
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vhere [K] and (M] ars the stiffness and mass watrices of the structures mathemati~al
model; wp ic the angular flutter frequency; k is the reduced frequency, bwf/V,, .
in which b is the reference wing semichord; and [A] is the complex aerodynamic ,

:~,,¢ H
. force matrix compatible with the-structural degrees of freedom of the surface, . & :
{ nea
: If the it element's stiffness and mass matrices, [K ] and (M ], vary linearly \
f with 1ts design variable, Equation (9.4) can be manipulated into & nev "encrgy- L
; densj ty" form: e
[] ' Lt
¥ T A ¢
§ v, (v v51"x ) (VTR ) b
; ami zwg mi xni ,
‘ 2
i T .
; /{ ) inJtug (717K, 105 |
¥ ‘ ni ’
. by N T
) (ir. () 042001 031", D00)
2 l. m m
i i ,
" T 7 b
(et 3to) (v, Do) Y
-C R = b g I + 1 - 1 R (9.5) ’ . ‘
— ; o
or w
WV, 0,
51- = SED, - KED, , (3.6) E ~,',,=’:~
where the subscripts R and I indicate the real and imaginary components, )
respectively, of the flutter vector and its associated row vector, and {“, K
where C is a real quentity defined by ’

¢ Be(v)” [A)/2)(0)) + 2k, (9.7)
\ In ({V}*(3(A)/3k){v})

In Equation (9:5), terms have been grouped into two categories. The
first, SEDi, includes what may be interpreted as u linear combinatiorn of
generalized strain-energy-density tems. The second category, KBDi, contains
a similar set of generalized kinetic-energy-density terms, This grouping of
terns is adopted in the formulsation and programming of the flutter-veloecity
derivatives to enable the FASTOP user to readily compare the separate contri-
butions of each element's stiffness and mass to its derivative, An example of

T

— ———
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the usefulness of this feature occurs when ideatifying locations in the structure
wiiore mass-balance could be effective in increasing a surface's flutter speed

(i.e., vhere large negative KED's exist). This concept is discussed further in
Subsec.tion 10.5.2.

In order to compute the derivatives defined by Equation (9.5), it is necessary
to first transform the flutter vector and its associated row vector from %™e modal
coordinatas used in the flutter analysis module to avsoclute structural coordinetes.
The different transformation relations reguired for cantilevered structures and
free-free structures are discussed below.

(a) Cantilevered Structures - In cantilever analyses, the transformation
between modal and structural coo~dinates utilizes the normal node
shagfs [x] (see Equation (7.9)) of the dynamics model, and matrix
[B] which transforms displacements from dynamics coordinates to
structures coordinates (see Equations (5.6) and (5.7)). If lower
and upper case symbols are respectively used to denote vectors in

modal coordinates and structures coordinates, the required trans-
formations take the form

fo)« tal{u} ,{v}" = (v} "la]” (9-8)

where

[] - 2] [x] (9.9)

(b) Frec-Free Structures - It may be recalled that the basic vibration
equation for free-free analyses (see Equation (7.20)) was cast in terms
of relative dynamic displacements {¢DR f. Thus, {u} and {v} are
transformed to pelative structural coordinates by the relations

{Urel} ’[Qﬂ](u} s {vreI.}T = (V)T [QR]T s (9.10)
l winere
. [QR] = [B]T [%R] . (9.11)
|
}
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Now, rigid-body motion of structures points depends on both the plug motion {ep}
(see Equaticn (7.19)), and matrix [Ag] which defines those disp%acements for
unit plug mciions (sec Section 7.4). Accordingly, {u} and {v} are transformed
to absolute gtructural coordinates by the relations

{"m} N [QA]i“} ’ {"m}T = vl T[QA]T ) \9.12)

[]- ]+ [s] [e]- (9.13)

The transformation to absclute coordinates given by Equations (9.12) and (9.13)
is used in the computation of the kinetic-energy-density expression ir Bquation
(9.5). Equationa (9.12) and (9.13) can also be used in the computation of the
strain-energy-density expression. However, as strain-energy-density is only a
function of relative displaceménts, Equations (9.10) and (9.11) are used for that
computation since better numerical accuracy is achieved.

where

9.3.1.1 A Theoretical Consideration. In the computation of the flutter-velocity
derivatives, the normalization utep defined in Equation (9.3} and the computation
of the coefficiert C defined by Equation (9.7) are actually carried out directly
in modal coordinates using :j', the generalized air force matrix (instead of [A]),
and the generalized mass matrir (instead of the structures-mode) mass matrix).
Moreover, the flutter vector and its associated row vector are also initially
computed in modal coordinates before transforming to structural coordinates.

Now, in modal coordinates, the flutter equation takes the turm

([xm] - v ([Mm] N [5])){u} =0, ' (9.14)

vhere [K | [Mm] and [a are the generalized stiffness, mass and sercdynamic
matrices, respectively. That is,

{“m] - [QT [“][Q] , (9.158)
[“m] - [Q:E [“][Q] , (9.15b)
B ] [Q] [A][Q] , (9.15¢)
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where K] , [M] and {A] are the structursl stiffness, mass, and serodynamic b e
matrices, respectively, and [Q] is the transformation matrix defined in Equation ’
(9.9); for a free-free analysis, matrix [QA] (defined in Zquation (9.13)) replaces
[q] in Equations (9.15). If Equation (9.14) is used as the starting point, the :
derivation of the flutter-velocity derivative expression results in an equation P

identical to Equation {9.4) except that all vactors and matrices are in modal
rather than physical coordinates; thus terms of the form {V}T alx I{u} and
Bﬂi

{"T E-E{J{u} arise. In order to evaluate these torms, Equations (9.15a) and
amy
(9.15b) must be used. Now, the columns of [Q] are simpiy the vibration mode
shapes expressed in structural coordinates. I these mode shapes are assumed to
remain constant during a variation im m, , it follows from Equatiors (9.15a) and

(9.15b) that
teF ol tot = T alal i,
amg any
v ;%J{u} - QV;T[Q]T g.LE][Q]{u}. (9.16) . P

It is noted that the terms on the right-hand side of equations (9.16) are

precisely the terms obtained by substituting the transformations of Equations

(9.8) or (9.12) into Equation (9.5), as described previously. Thus it follcws thut
. the computation of flutter-velccity derivatives within FASTCP assumes the [Q}

matrix to be constant, i.e.,the vibration mode shapes, expressed in structural

coordinates, are retained as the generalized displacement vectors during a

variation in the design variables.
9.k D/PLEMENTATION OF THE COMBINED STRENGTH AND FIUTTER RESIZING PROCEDURE
9.4.1 Determination of a Design Change for a Desired Flutter-Speed Increment

In applying the flutter resizing formula of Equation (9.2), an iterative
procedure is used to determine the value of the target derivative, (Bvr/ami)
The procedure makes uge of the assumption that for small design changes, the
flutter-velocity derivatives may be used to predict a change in flutter speed,

e TR R e T

target’

AVt , &8 & linear combination >f element weight changes, Ami; that is »
pred
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(9.17)
1A%y
To sturt the iteration, a target derivative of 86% of the average of all
positive derivatives is assumed. Equation (9.2) is then used to determine a

new weight, n for each variable. The new weights are then adjusted so that
new

no design vaviable (a) falls below that required for strengh, (b) violutes mini-
mum and mariraum gage constraints, or (e¢) is reduced by more than the percentage
specified by user-supplied "max.-cut" parameters, (These conuiderations are dis-
cussed more fully in Subsection 9.4,2), The resulting incremental weights,

am, = m -m , are then used in the linear relationship of Equation (9.17)
t j'x'xew iold

v
AV = t m .
ALY BT

to compute a predicted velocity increment, Avf s which is then compared with

pred

* the desired velocity increment, Avf . Two convergence criteria are used for

des
this comparison: satisfactory convergence occurs when

avy - AV, <A (9.18a)
des pred

9t when

av, - AV, (9.18b)

<e ,

where 3 and ¢, are specified by the user. If neither criterion is satisfied, the
target derivative is automatically adjusted within the program (see discussion
below) and the entire procedure is repeated to obtain another trial redesign. This
iterative process continues until either a) at least one criterion is satisfied,

or b) it is established that neither criterion can ever be met. For the latter
case, wherein the design does not change from one trial resizing to the next, tue ’
last trial design is accepted; this situation may arise, for example, due to the
presence of maximum gage constraints.

The automatic adjustment of the target derivative from one trial redesign
to the next proceeds in the fullowing manner. Suppose that the first trial redesign
indicates that the predicted velocity increment is larger than the desired iacrement.

m
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: Eo long as this condition holds true (aV > AV, ), the target derivative is
: 1‘pred fdec
repeatedly increased by }ﬁ of its previous value in esch of the ensuing trial

resizings. Eventually, when the predicted increment beccmes zmaller than the

desired increment (Avr < AVf ), the target derivative is repeatedly
pred des
decreased by }_ﬁ of its previous value; when AVf again becomes larger than r
pred
s’ the target derivative is successively increased by 0.1% of its previous E

AV

de

value. Thut is, each time aV, "erosses” Avf the program chenges both the
pred des
sense and magnitude of the target derivative adjustments (+10%, -1%, +0.1%, etc.).

As mentioned above, the process terminates when Equation (9.18a) or Equation (9.16b)
is satisfied, or when the design does not change from one trial resizing to the next.

: . Clearly, the initial supposition (A\Ir > &V, ) in the first trial redesign
i pred des
is immaterial; if the opposite were true, the starting target derivative would be )

decreased, not increased, by 10%.

9.4.2 Definition of "Max.-Cut" Parameter> and Representation of Strength and '
Manufacturing Constraints when Resizing for Flutter

When using the flutter resizing equation, Equation (9.2), the question of . . 4
how to resize elements with very small, or ever negative, derivatives must be g '
addressed., In such cases, it might appear desirable to reduce the elemert's size
to its valuc dictated by strength or minimum-gege requirements. However, in some
cases it has been found that the stability of the resizing procedure is improved _—
if the reduction in a structural element's size, in a single redesign step, is b
constrained to a specified precentage of its previous value. Since it has not

been found necessary to apply the same restriction to mass-talance design variables, B
the user may specify a seperate reduction factor for mass balance (normally zero, 3
i.e., no restriction). These reduction factors, referred to as the "max.-cut” para- é
meters, are discussed furthar in Subsection 10.5.4. i

. In adcition to these "msx,-cut" constiraints, strength requirements and mini-
oum and maximum manufacturing gage limitations must be considered when resizing

for flutter. The interaction of a flutter-speed constraint with strength require- f

ments is accounted for by successively optimizirg for strength and flutter, with :

the strength-designed members from the fully-stressed-design procedure (ASOP), (see »

Section L) being considered as minimum gages in the next flutter optimization, and

vice versa,
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An"element's minimum end maximum manufacturing geges, tmin and tmax’ are

supnlied by the user during the initial pass through the strength analysis and
redesign module of FASTOP, The output of that module include3s element gage size,
t, and stress ratio, s (actual stress/allowable stress), which, along with tin

and tmax’ are transferred to the flutter resizing module, The stress ratio will
be very close to unity for a stress-critical element, but it will be less than
unity for a flutter-critical element, i.e., for an element that has been resized
for flutter (without encountering strength or minimum manufacturing constraints)
in a previous pass through the flutter-resizing module, The minimum strength-
adequate gage size for any element is therefore the product of its stress ratio
and associated gage size, {.e., t8 = 8 x t. Thus, when resizing for flutter, an
element is not permitted to be sized below ¢ n o ts’ whichever is larger. Also,

mi
the element cannot be sized to a value greater than tmax‘

9.4.3 Multiple Flutter-Redesign Steps

FASTOP allows the user the option to perform successive “lutter-redesign
steps without computing new nomal mcdes of vibration after each step. In this
"eoupled-mode” approach, the last set c. vomputed normal mode shapes are re-
tained as assumed modes and the changes in the modal stiffness and mass matrices,
Dygn and Lﬁgn] » are given by the following expressions. '

Case (a). Cantilevered Structure

] - ] T JR) Lo d - T [ JRJ (9:19)

Case (b). Free-Free Structure

. [M‘m] ) [QR]T[AKS]ER] ’ [U“m]’ [QA]T[MS]@A] (9.20)
'Z.
5
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T~ .y . - Here, {;y(s] snd {&!&] are the cunulative incremental changes in the structures- \
) A - model stiffnesc ond mass matrices since the last normal-mode computation, and ]Q} s b
T Rgland [, ] ate toe- transformdtiohs defined in Equations (9.9), (9.11) and (9.13). ‘ @

 The adjusted generalized stiffness snd mass matrices, [Km and{Mm] , are then
T new new

obtained by adding the above incremental matrices to the orthogonal ones corre-
éponding to the last set of normal modes; that is

o -
'

K ] = [K ]+ [AK }
. [ B new n m (9.21) ,
i and .
; r Com M ] [ [ M ] . .22‘
i Lum]new " n. g ©-22) »
!
Note that these new matrices are no longer diagonal (i.e., the original normal- !
5; mode coordinates become "coubled").
H
% The following section describes this interactive resizing process from the b

uger's point of view.

P ».m.«n-., st e

L

e »-.\.

- -'.-w...a - v————




LN

Section 10

USE OF FASIOP FOR INTEGRATED ANALYSIS AND DESIGN

10.1 SUMMARY

FASTOP is an analysis and redesign tool that can be used to generate near-
ninimum-weight designg for aircraft structures subject to comtined strength and
flutter-speed requirements. Two busic programs are involved; one is primarily
» concerned with the static strength problem, and the other addresses the flutter
condition. In the typical redesign process, each of the proérams is wxecuted
several times. Communication between the programs ensures that the design re-

, quirenents for one type of constraint are not intentionally violated by the other.
- The material contained in this section is intended to guide a2 user through the
entire redesign procedure. DMNumerous suggestions are put forward based upon tne

experience gained in the solution of the d=monstration problems to be discussed
in Section 12.

10.2 ORGANIZATION CF FASTOP

The Flutter And STrength Optimization Package, FASTOP, is comprised of a
Strength Optimization Program, SOP, and a Flutter Optimization Program, FOP,
As shown in Figure 10.1, each of these major programs is organized on a modular
basis. The modules are de’ined as follows:

SOP Modules
ALAM « Autcmated Load Analysis Module

n b ar o m—m—

: ATAM - Automated Transformation Analysis Module
ASAM - Automated Strength Analysis Module

AGOM - é_utomated §trength thimization P_l_odule
FOP Modules

AVAM - Automated Vibration Analysis Module

v Wt rteem ax

. AFAM - Automated Flutter Analysis Module
AFOM - Aatameted Flutter Optimization Module

These acronyms will be used to facilitate the discussion throughout this section.
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Figure 10.1 Modular Organizution of FASTOP

10.3 SEQUENTIAL USE OF THE STRENGTH AND FLUTTER OPTIMIZATION PROGRAMS

SOP and FOP may be executed individually or, if desired, they may be run
back-to-back as a multiple step job, Theoretically, there is no restriction on
the number of S0P and FOP steps that may be executed in a given job. However,
practical considerations such as running time and the normal desire of the user
to examine the output of one program before executing tl.2 next will 1imit the
number of steps. It is recammended, therefore, that generally no more than two
steps (either SOP-FOP or FOP-SOP) be executed in a multiple-step job.

Figuve 10.2 illustrates the first four steps in 2 typical redesign pro-
cedure, Notice that SOP must be the first program executed in the entire pro-
cedure and that the two programs alternate thereafter, As shown in the figure,

Start
Tape A - Tave A _ —
S0P Tape C‘- 30P Tave C'_._
’ 1]
Tape B__! rop Tape B ! rop

Jigure 10.2 Basic I/0 Tapes in FASTOP
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data {s transferred . 'ween progranms by means of magnetic tapes. Each program
generates two basic output tapes; one is intended for the next SOP step and the
other 1s intended for the next FOP step. The general contents of these tapes
are briefly discussed below.

Tape A - This tape, referred to as the "SOTOSO" tape, is generated by SOP
for use in the subsequent SOP step, Essential data such as structures model
geometry, boundary conditions, applied loads, etc. are passed via this tape.

Tape B = This "SOTOFO" tepe i generated by SOP and passed to the next
FOP gtep. Latest member sizes and the agsociated flexibility (or stiffness)
matrix are among the data contsined here,

Tape C = FOP accepts member sizes from the above "SOTOFO" tape, adjusts ‘
them by the flutter-resizing algoritim and passes the updated menber data to ®
the next SOP step via this "FOTOSO" tupe,

Tape D « Data peculiar to FOP, such as mass data, mass balance locations,
etc., are passed from one FOP step to the next by means cf this "FOTOFO" tape.

10.4 USE OF THE STRENGTH OPTIMIZATION FROGRAM {SOP) » 4

At any stage of the redesign procedure, SOP can be used in vne of three
possidble modes:

(a) to simply compute the dynamics model flexibility matrix [A], or the
structural stiffness matrix E(.s]

(b) to stress analyze the structure and then compute [A] or ﬁ(z] S

(¢) to perform one or more FSD (fully scressed design) cycles and then
compute [A] or [K%
Use of one of these modes in any SOP step does not preclude the use of a different
mode in a latev step.

10.4,1 Conventional Use of SOP

The suggested procedure is to use mode (¢) for the initial SOP step and then,
depending on the degree of scrength/flutter interaction encountered, to use either
mode (a), (b) or (c) in subsequent SOP steps. Whenever mode (c) is employed, the
user mmust specify the number of FSD cycles to be performed. For the initial SOP
step, experience has indicated that four redesign cycles are nomally adequate to

transform a preliminary design (e.g., one having uniform gages) into 2 converged
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fully stregsed design., However, a single cycle should be sufficient in later SOP
steps, In fact, the results of the demonstration cases described in Section 12
indicate that strength redesign ~ould have been bypassed in all intermediate re-
design cycles (mode (a)) with a final strength resizing rear the end of the
flutter redesign process. ‘The user must also specify, in the initial SOP step,
which, if any, of the total set of elements are to be permanently excluded from
the strength resizing process. This elimination becgmes necessary, for exanmple,
when some elements are adequately modeled to simulate the stiffness of a structure

‘tut «re inadequately modeled for stress analysis and redesign - as when haneycomb

core is modeled with rid and spar webs. Actusl exclusion of an element is effec-
ted by simply setting its minjmum and maximm allowable gages equal to its initial
(dﬁ:ired) gage. lNote trat since these same allowable gages are transmitted to
FOP, these elements are in fact withdrawn fron the entire redesign procedure.

When mode (b) is used, strength resizing does not take place, tut the ele-
ment stress ratios (actual stress/allowable stress) are updated to define revised
strength gage requirements of flutter design variables for use in the subsequent
FOP step. This enables FOP to avoid violating strergth requirements when resizing
for flutter,

10.4.2 Use of SCP with Strength-Governed Designs not Generated by SOP

One other important use of FASTOP occurs when SOP is not intended to be
used for stress analysis or redesign. This condition arises when u gtrength-ade-
quate design, generated using criteria othef than those embodied in £OP. is found
to be flutter deficient. Under these circumstances, mode (a) should be ured in
all SOP steps ard, in the first SOF step, the minimum allowable gage of each ¢le-
ment should te set equal to its initial gage., This will easure that any subse-
quent flutter redesign in the FOP steps will lead to a flutter adequate design
in which member gages are nowhere less than those of the initial desigrn.

10.4,3 Initial Design

Although resizing may have occurred in the first SOP step, the resulting de-
sign of this step - not the input preliminary design - is referred to as the
initial design. It is this initial strength-adequate design which may be flutter
deficient and require subsequent flutter/strength resizing'to achieve an adequate
design. If 30, 21l changes in design parameters, such as flutter speed and total
welght are defined with respect to the initial design.
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10.5 USE OF THE FLUTTER OPTIMIZATION PROGRAM (FOP)
There are five possible modes in which FOP can be used:
- (a) to perform a vibration analysis
(b) to perform a flutter analysis ii”"
(c) to perform both vibration and fiutter analyses
(d) to perform vibration and flutter analyses and also compute
flutter velocity derivatives
; (e) to perform vibration and flutter analyses, compuie
flutter velocity derivatives and then perform one or more j
i
«cycles of flutter redesign (each redesign cycle is followed by
a "coupled mode" flutter analysis and camputation of flutter
velocity derivatives)
‘ It is not unlikely that each of these modes will be exercised at some point in !
. the entire redesign procedure. f
| ' 10.5.1 Determination of Critical Flight Condition
\ After the first SOP step, the user must determine if the initial design
is flutter adequate. The first requirement is to obtain a realistic dynamic mass ,. o
' matrix for the initial design. This task is normully the responsibility of a )
weights engineer who must acccunt for the weight of detailed structural ltems
(rivets, fittings, etc.), and other items (e.g., engines, fuel, actuators, ex-
ternal stores), as well as the idealized structural weight. FOP, however, does

have the additional capability of automatically generating a dynamic mass matrix
by using the idealized structural weights in conjunction with nonoptimum factors
(see Section 10.5.3) and additional-mass data supplied by the user. The next step
is to perform a series nf vibration and flutter analyses for various flight condi-
tions in order to determine the critical condition fram the standipoint of flutter. [
The vibration analysis need only be done orce for each weight condition, either

independently (mode(a)), or in conjunction with the first flutter analysis for

that weight condition (mode (¢)). In any event, the vibration deta is scved on

tape and used in subsequent flutter analyses (mode (b)).
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10.5.2 Initial Mass Balance Data

If a design is flutter deficient and the user intends to include mass
balance in a redesign study, the location and an initial value of each mass bal-
ance must be specified. Experience has shown that the choice of this initial
usta can have a significant effect on the subsequent redesign behavior. For
example, a case was encountered in which the effectiveness of a mass balance de-
pended strongly upon its initial value; small initial values were not useful (nega-
tive flutter-velocity derivetives) and were subsequently eliminated fram the de-
sign, while larger values were fourd to be very effective. Accordingly, it may be
profitable to do & small separate mags-balance study (mode(d)), varying the initial
values and locations. The resulting flutter~-speed increments and mass-balance
velocity derivatives should guide the urer in the selection of good initial mass-
balance data, Note that the velocity derivatives of the structural elsments also
contain useful information. Specifically, the distribtution of the kinetic-enercy-
density (XED) components of these derivatives is a direct measure of how flutter
speed will be affected by small mass increments throughout She structure;
mass increments are most beneficial in regions of large negative KED components.

It is also suggested that the initial mass-balance data inclde a number of
selected "durmy" locations where zero values of mass balance are gpecified, By
means of this contrivance, the user essentially "reserves the right" to introduce
real values of mags balance at these locations in any subsequent FOP gtep; that is,
after the initial FOP step, the user will have the option of changing the mass
balance value at any location specified in the initial data,

Finally, one last point must be made regarding mags-balance locations. Con-
sider an initial masz balance, my. Unless the automatic mass generator option is
being employed, the user must inmert my directly into the initial dynamic mass
matrix at the translational degrees of freedom associated with its dynamic model
node point, "d". However, since all redesign, structural as well as mass balance,
is accomplished in the structures model, any incremental mass balance Am jis
firat assigned to structural node point "s" (specified by the user) and then trans-
formed to the dynamics model by means of the transformation defined in Equation
(5.10). It is essentisl that the transformation of pAm 3 fram node g be made
directly to node d snd to no other dynamic node. The user should keep this re-
quirement in mind when creating the force beaming table that prescribes the beamingy
of unit loads from dynamic nodes to structural rnodes., This problem does not arise
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when the automatic mass generator option is employed because both the {nitial and
incremental mass balance are then gpecified in the structures model and transe-
formed to the dynamics model.

10.5.3 Flutter Redesimn Elements/lionoptimim Factors

After the initial mass-balance data has been specified, the user should
indicate which, if any, of the total set of structurzl elements are to be perma-
nently excluded from the flutte:r resi:zing process. As a minimum, those elemernts
which were previously elixinated from resizing in SOP should likewise be ex-
cluded in FOP, The user may now 2lso introduce nonoptimum factors for use in
the SOF/FOP redesign process - unless, of course, these factors weres already
introduced in conjunction with the automatic mass-generator option. ilionoptimun
factors are intended to account for the fact that there is incremental weight,
other than that of the primary structure, associatei with the redesign of each
element; for example, when redesigning an element with a noroptimum factor of
1.2, the true incremental weight would be taken to be twenty percent larger than
the computed incremental structural weight of the finite element.

10.5.4 Basic Farameters for Automated Flutter Redesign

Whe-ever mode (e) iz exercised in a FOP application, the user must specify
input data to control the rnumber of redesigrs to be accormlished in the step,
the desired flutter speed step sizes, etc. Same important parameters are dis-
cussed below.
10.5.4.0 Flutter Band. Let Vy and vrdes denote the current flutter speed and
the desired final flutter speed, respectively. wWhereas sreeds much larger than
Vfdes are undesirable because of the weight penalty associated with the extra
sreed, values nominally Iin excess of ?fdes -re considered to be acceptable.
Thus, the user must specify both Vggq.4 and an additional parameter ¢, in order
to define a2 “band" of accaptable flutter speeds; it is suggested that this band-
width not exceed one percent of -‘;fdes' in which case the band will extend from
Teges £0 1.01 Tpgege
10.5.L.2 Step Size/Normal vs. Coupled Modes. A step siz'e perameter, BAR, and
2 parameter defining the maximum permissible number of automatic redesiy: steps,
{FIX, 2re a2lso regnired by FOF, The program first undertakes to raise (or lower)
the flutter sreed from 7V to a value in the center of the flutter bard, V*, in

3R approximately equal speed increments; thereafter, each successive redesign
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attempts to get to V* directly. Exccution continues in this manner until the
design converges, or until NFIX redesigns have been effected. The first flutter
analysis in the foregoing porocedure utilizes normal modes of vibration, but all
subsequent analyses for modified designs are based on a coupled mode approach
utilizing the original normmsl modes together with modified generalized mass and
stiffness matrices including off-diegonal terms. Experience has indicated that
coupled mode results are somewhat unreliable, and it is thercefore recommended
that generally only one redesign step be performed in each FOP application, i.e.,
the user 's advised to set NFIX = 1. This restriction is not very severe because
studies have shown that good results can be obtained with fairly large step sizes
and consequently a small number of recesign cycles, when the flutter analyses and
velocity derivative computations are besed on revised normal modes. For example,
the flutter speed of the Intermediate~-Complexity Wing (see Section 12) was in-

creased by thirty percent to a nearly converged optimum design in just four single-

redesigr FOP steps.

10.5.4.3 'Max.-Cut” Parameter. In preliminary studies of the aforementioned
Intermediste-Complexity Wing, it was found that a few elements were undergoing
severe fluctuations in gage size from one flutter redesign to the next. The
phenomenon was attributed to the fact that, due to the coarseness of the model,
the load pi.ths were very sensitive to design changes. This stability problem
was resolved by simply not allowing any gage size to be reduced by more than
twenty-five percent in any single redesign, i.e., the "max-cut” parameter, D,
was cet equal to 0.75. Difficulties of this sort did not occur in the redesign
study of the all-movuble stabilizer - for which a very detailed model existed.
Indeed, the entire resizing prccedure progressed very smoothly and no restriction
had to be imposed on gage size reduction (D = 0.0). Accordingly, the user is
advised to begin the redesign procedure with D = 0.0; then, if gage-size insta-
bilities appesr, the "max-cut” parameter can be adjusted. Note that the user

must specify a separate "max-cut" parameter, DBAL, for mass balance variables.

10.5.5 Termination of Redesign Process

It has already been pointed out that an efficient design (close to the

optimur) can usually be achieved with fairly large step sizes provided the single-

ctep, normal-mode approach is employed. Once a flutter adequate design has been
obtained, the user should avoid excessive iterations within the flutter band
while striving to effect a condition of uniform flutter-velocity derivatives.
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Experience has shown that such an approach can expend large amounts of ceaputing
time for small improvements in design efficiency. It is recommended, therefore, ’
that the redesign process be terminated when weighit reductions from two or three

successive iterations are no longer significant from an engineering point of view.
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Section 11 » ‘
EXAMPLES OF ANALYSIS RESULTS N
11.1 SUMMARY

Calculations to demonstrate the capability and versatility of the FASTOP ‘sj ’
analysis package have been performed for three typical designs « 8 prelirin- B

ary structures model of a sixple cantilevered winz and detailed rodels of an
all-movable stabilizer and a wing with a pylon-mrounted externsl store,

The structures of all three surfaces were reprecented by finite-elewent ?
ideslizations and the degrees of r_eedor of the structures models were - ;
duced to a lesser number of degrees of freedor required for the dynamics
mcdels by 2 force besring transformation procedure, The types of calculs-
tions performed include subsonic and supersoric serodynaric loed predictions,

inertial losd predictions, load beamring to structural node points, detemrins-
tion of internal member loads and stress ratios, formation of dynerics rodel
flexibility matrices, vibration mode anmlyses, end subsoric snd supersonic
flutter analyses using both the k s#nd p-k solution procedures. Typicsl re-
sults cbtained for the three demons'ration problems are presented and dis-
cussed, ‘

11,2 DESCRIPTION OF DEMONSTRATION PROBLEMS

. T

11.2.1 Structures Model of the Intermediate Ccmplexity Wing

The structural idealization for the so-called "intermediate complexity wing"
is the simplest of the three demonstiration cases selected and is representative
of & typical preliminary design configuration. The all-aluminum two-cell wing
box, illustrated in Figzure 11.1, is modeled using 100 finite elements.

Membrane element. are used to represent the wing covers, shear venels repre-

sent the spar and rib webs, and bar elements are introduced betweern upper end
lower ccver node points., The wing root is built-in by fully constraining all

- 9.,~...»..M Ry i e st —.

structural nodes on the root boundary, The structure has s total of 190 degrees
of freedor. cororising 3 trancletional degrees of freedor at each structural
ansde point,
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11,2.2 Dyramics Mcdel of the Inte:mediate Complexity Wing

The 150 degrees of freedom of the structures model are transformed to
39 dynamic degrees of f?eedcm using the force beaming procedures described
in Section 5. The selected dynamic degrees of freedom, indicated in Figure
11,2, inciude out-of-plane (z direction) displacements at all dynsmic nodes,
these nodes belng located between adjacent upper end lower cover structural
nodes in the mid-plane of the wing. The overhanging penels, representiu.e
the mass and moment of inertia of structure external to the wing box are
also included in the dynamics model, Their inertis effects are included
by introducing rotational degrees of freedom of esch panel about an exis
parallel to its attaching structure i.e,, front beam, res- beam, or tip rib.
The local axis system for each pan2l is indicated in Figure 11,2,

11.2.3 Structures Model of the All-Movable. Stabilizer

The all-movable stabilizer model, shown in Figure 11.3, is representa-
tive of a complex detailed design configuration. A total of 891 finite
elements are used to model the stabilizer surface including its pivot and
actustor restraints, (The details of the pivot restraints and the sctuator
ere omitted from the figure to preserve clarity of presentation). It should
be noted that the inner and outer stabilizer-to-pivot support toints are
nodelad in the mid-plane of the surface, enclosed by structural nodes L81,
483, L63, LAL and structural nodes 379y, 381, 349, 347 respectively. The
stabilizer construction consists of titenium covers, modeied as membrane
elements, with an eluminum honeycomb core. The honeycomb core is modeled
38 sparwise and chordwise shear panel elements with stiffness properties
representative of the actual honeycomb stiucture, The model hes a total of
1172 degrees of freedom.

11,2.4 Dynamics Model of the All-Movsble Stahilizer

The force beaming procedure, described in Section 5, is used to transfom
the 1172 structural degrees of freedom of the stabilizer to 92 dynemic dexrees
of freedom, Vertical (out-of-plane) degrees of freedom are specified st the
73 dynamic node points shown in Figure 11.k, and sdditional rotational desrees
of freedom are specified at overhanging panel points, designated as points
1 throagh 1} end 65 through 72.
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11.2,5 Structures Model of the Wing-with-Store

A second, but significantly different detailed design configuration is
the wing with external-store shown in Figure 11.5. The structural idesliza-
tion of the multi-spar aluminum wing box uses warped quadrilateral membrane
elements to represent the wing covers and quadrilateral shear panels for rib
and spar webs, rhe semi-wing is modeled from the tip to the airplane center-
line and symmetric strictural boundary conditions are specified for all nodes
in the plane of symmetry, The wing-to-fuselage connection is sccomplished
with vertical shear attachments at nodes 37 and 47 and a drag attachment at
rode 47, A wing-store pylon, modeled with beam elements, is attached to the
wing at nodes 175, 176, und 181, 182, The structural model has a total of
602 elements and 885 degrees of freedom,

11,2.6 Dynamics Model of the Wing-with-Store

The dynamics model, illustrated in Figure 11.6, is schematically similar
to the two previous mcdels, However, for the wing-with-store there is an
additional requirement to include fore-and-aft degrees of freedom at every
node to account for dynamic coupling between wing pitch and stors trans-
lation, The store is allowed 5 degrees of freedom and the dynamics model

contains a total of 136 degrees of freedom,

11,3 DISCUSSION OF ANALYSIS RESULTS OBTAINID WITH FASTOP

11.3.1 Loads Analysis

Data pertalning to the basic aerodynemic characteristics of each surface,
plus a summary of flight conditions for which aserodynamic load distributions
were computed using FASTOP, are presented in Table 11,1, Two examples of
pressure distributions are presented for the intermediate-complexity-wing
demonstration :ase, The first example (Figure 11.7) shows the shbsonic
pressure distribution for the Mach 0,9 flight condition noted in Table 11,1,
The pressures were computed by the vortex-lattice serodynamics routine des-
cribed in Section 3. The pressure distribution for the Mach 2.0 flight condi-
tion, computed by the supersonic source distribution aerodynamics routine, is
presented in Figure 11.8. 1In the supersonic case, the pressure is almost
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\ , TASLE 11.1 BASIC WING DATA AND SUMMARY OF FLIGHT
. : CCIDITIONS FOR COMPUTED AERODYNAMIC LOADS ,
y L4 re
i Leading | Number of ~
N Aspect | edge aércdynamic Flight Conditions "
{ Model sweep panels used :
: ratio angle | to repre- Alt‘_3 Angle of !
sent wing [Mach No. | (£t.x10™°) | Attack
% Intermediate 0.5 30 30
' ¢ Complexity | 3.13 | 31° 36 0.9 30 20
;
: Wing 2.0 30 2° ®
‘ All-Movable 0.8 0 16.5°
H 2.52 51° 100
! Stabilizer 1.3 10 9.0°
E -
! ¥ing-with. Lg6 | 29 84 0.85 0 9.20 ®
. Store
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uniform in the mid-span region dque to the almost two-dimensional flow char-
acteristios st high Mach number, The abrupt pressure reductions in the in-
board and tip regiuns of the wing occu.' at locations where the rcot and

tir Mach lines intersect the chords along which pressures have been computed,
symmetric boundary conditions have been specified for both cases, although
loads may be optionally calculatzd for antisymmetric or asymmetric conditions,

FASTOP was also used to compute inertial load distributions for the in-
termediate complexity wing for translational and angulax accelerations which
could correspond to the anerodynamic flight conditions of Tsble 11.1, The
weights model used for this purpose closely resembled the dynamics model pre-
sented in Figure 11,2, except that overhanging panel mass and inertia prop-
erties were specified at panel c.g.'s in an unswept axis system, The results

of the inertial load analysis are in the form of inertial forces and moments
in the weights grid.

11,3,2 Structural Analysis

The structural analysis module was used for each example structure to
determine its level of strength adequacy and to establish its flexibility
characteristics for subsequent vibration analysis, Finite elemont sizes in

esch structural idealization were selezted to be reasonable but sre regarded
as only preliminary.

The previously computed aerodynamic end inertiasl applied loads were
transformed to the structures models by using the procedures of Section 5,
and ratios cf maximum working stress to allowable stress (stress ratios)
were computed for every finite element in each model, Since these stress
ratios are based on initial elemer¢ sizes (for a non-fully-stressed design),

they are of little significance except tu demonstrate the proper working of
the program,
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In the same analysis module, the structursl stiffness matrices were
assembled, These were subsequently transformed iuto dynamics rodel flexi-
bility motrices by egain utilizing the transformation procedures of Section 5.

11.3.3 Vibration Analysis

i Vibration analysis mode shape plots for the three demonstratict struc-
tures are presented in Figures 11.9-11,11, These plots were generated using
. the CALCOMP plotter and associated software routines which are part of the

§ FASTOP system. In each case ’..e plotted data consists of modal éisplace-
ments of the surface dynamic node points., A summary of the model charscter-
istics of each demonstration structure appears in Table 11.2, Some perti- )
cular features of the vibration analysis results follow,

““"—.wﬂm s '%Jl.'l-r.‘u—u .
«

The intermediete-complexity-wing mode shapes are typical for a simple
cantilevered structure. Wing torsion (Figure 11.9b), which is the second

cean e o

mode, has a node iine running spenwise, in close proximi*; to +the trailing ®
edge, Chordwise bending is evident in modes 2-k,

The stabilizer mode shapes (Figures 11.10a-d) indicate the presence
of root rotational motion due to the pivot and actuator support flexibil- ' 1
ities. Because of this flexibility, the stabilizer has both = pitch mode, f

\ R o A e e % et T ey O

o 4
in which the stabilizer rotates ebout its pivot (Figure 11.10b), snd a tor-
eion mode, in which the surface twists with virtually no pivot rotation
| (Figure 11,104). .
’ The mode shape plots ior the wing-with-store example are preseuted in g
Figures 11,1la-f, The fore-aft deflections for the wing leading edge are g.
f included on 2 separate reference line located in the lower portion of esch STy
i figure, The hard plotted store motions, both translational snd rotetional, '
' are shown with respect to the undisplaced store position, The initial re-
quirement to make the wing flutter-critical was sccomplished by defiring [
relatively high store mass and inertia properties, The re :ting high !
sto:r: niteh inertias causes significant wing torsion in the stcre pitch rode,
shown ir Figure 11,1le,
. ’
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TABLE 11.2, SUMMARY OF DEMONSTRATION PROBLEM ;
; VIBRATION MODE CHARACTERISTICS »

&
i
Mode i , '
Mode Figure .
Model nusber frfg:ssmcy Mode description number P‘
Intermediate 1 20.58 Firs% bending 11.9s
Complexity 2 49,66 First torsion 11.9%
Wing 3 71,83 Second bending 11.9¢
4 93.90 Second torsion 11.94d ®
A1l 1 14,8 irst bending 11.10a
Movable 2 30.1 Pitch 11.10b
Stabilizer 3 k2.3 Second bending 11.10c
I .2 Torsion 11.104 ®
»
Wing-with- , 1 4,63 Store yaw 11.11s }
Store 2 5.0l Wing bending 11.11b
3 6.11 Stcre piteh & 1l.11c
wing torsion e
4 7.0k Store lateral 11.114 {
5 11.39 Wing second 11l.1le
bending
6 12,49 Wing fore-ait 11.11f
»
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b. Mode No. 2, Frequency = 30.1 Hz

Sheet 2 of Lk

Mode,

Figure 11.10 All-Movatle Stabilizer Vibra‘ion
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d. Mode No. U, Frequency = 52.2 Hz

11.10 All-Movable Stabilizer

Figure

Vibration Mode, Sheet L of L
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a. Mode No. 1, Frequency = 4.63 Hz

Sheet 1 of 6

Vibration Mode,

Figure 11.11 Wing-with-Store
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Vibration Mode, Sheet 2 of 6

b. Mode No. 2, Frequency = 5.04 Hz

igure 11.11 Wing-with-Store
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c. Mode No. 3, Frequency = 6.1 Hz

Figure 11.11 Wing-with-Store Vibration Mode, Sheet 3 of 6
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e. Mode No. 5, Frequency = 11.39 Hz

vibration Mode, Sheet S of 6

Figure 11.11 Wing-with-Store
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11.3.k Flutter Analysis

All cf the flutter plots presented in this section were obtained using
a CALCOMP vlotting routine, which is an integral part of FASTCP., It should
be mentioned that this routine plots the data points using symbol identifi=
cation, while the curve fairing is a hand process.,

The intermediate~complexity-wing flutter anelysis for Mach 0.8, ses
level, was performed using both the doublet-lattice and assumed-pressure-
function procedures, The planform was idealized by 72 aerodynamic penels
in the doublet-lattice approasch and the chordwise and spenwise polyriomials
assured for the pressure-function method were 3rd and 6th degree, respec-
tively, Flutter results for both serodynemic representations using the k=
method of solution are presented in Figures 11,12 and 11.13. An additionsl
analysis that uses the dcuhlet-lattice spprosch snd the p-k nethod of solu-
tion is presented in Figure 11.1L, All three anslyses yield almost identical
flutter speeds, However, the suberitical frequency and darping trends differ.
In particular, the frequency coalescence of the bending and torsion modes,
which causes the flutter instability, is more evident in the results from the
p-k method of solution,

The flutter analysis of the all-movable stsbilizer was performed using
the Mach-box method for a Mach numter of 1,6 and an altitude of 20,000 feet.
The serodynamic surface was represented by 334 rectangular boxes and the free-
stream diaphragm region, defined by the aft Mach line from the outboard tip
of the leedirg edge and the forward Mach line from the outboerd tip of the
trailing edge, was represented by two diaphragm boxes, The small number of
required diaphragm toxes concentrated in the tip region is e:plained by the
fact that both the leading and trailing edges of the stabilizer are supersonic
at Mach 1.6, The flutter analyzis results, presented in Figures 11.15a,b
show that the flutter mechanism is caused by a coupling between the stabilizer
bending and pitch modes,

Flutter analyses of the wing-with-store, using the doublet-lattice

method, are presented in Figures 11.16 a, b, The results, computed for
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Mach 0.8, sea level, clearly show a number of store modes with very low eero-
dynamic damping., The lowest flutier instability occurs at 330 knois equiva-
lent airspeed and is caused by coupling between the first wing bending mode
and the store pitch mode., The demping trend of the critical root is cher-

acteristic of the "grazing" instabilities encountered in store flutter
problems,
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Function Aerodynamics, k Solution), Sheet 2 of 2
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Section 12
EXAMPLES OF OPTIMIZATION RESULTS

12,1 SUMMARY

Calculations to demonstrate the redesign capability of FASTOP have been pere
formed using the intermediste coamplexity wing, asll-movable stabilizer, end wing-
with-store models, The characteristics of these models are described in Sec-
tion 11, The centilever-structure dynamics model of the wing-with-store, des-
erived in Section 11, was converted to a free-free model for flutter redesign,
This was done to fully demonstrate FASTCP's redesign capabilities for s con-
figuration vwhere dynamic interaction between the wing and fuselage might be
important, The details of the changes that were made to the dynemics model are
included in the discussion of wing-with-store redesign results.

Initially, the strength optimization portgon of FASTOP was used to obtain
a fully stressed design (FSD) for each deminstration structure. In order to
accomplish this calculation, it was necessary to specify flight design load condi-
tions for the loads analysis module, initial member sizes in the strength optimi-
zation module, and force beaming data rzequired for the transformation analysis
module. The latter sroup of data was needed to create transformation matrices
from the aerodyrumics and dynamics mathematical models to the structures mathe-
matical model. Thus in the initial FASTOP application the design loads were com-~
puted, these were then beamed to the structures model and the structure was re-
sized for strength. The analysis terminated with computation of a flexibility
matrix for the dynamics model. The subsequent redesign to achieve a specified
flutter speed improvement was achieved through multiple sequential submissions of
the two major programs of FASTOP - the structural optimization program and the
flutter optimization program. Except wren otherwise uoted, strength redesign was
accomplished after each flutter redesign cycle to aceount for interaction between
flutter and strength requirements.

P

Results of redesign studies-using the two centilever - structure models
and the free-free model are presenced and discussed below.

- o ‘..u
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12,2 DISCUSSION OF REDESIGN RESULTS

12.2.1 Intermediate Complexity Wing

Two @erodynamic design load conditions were specified for the intermed-
iate ~- complexity wing, namely, M = 0.5, sea level, o = 38°, end M = 0.9, sea
level, o = 9.3°, Unifom iritial gages (0.16 in,) were selected for all 100
elements of the structures model, and a minimum mangfacturing gage of 0.02 in,
wa3 specified for all cover, rib web, and spar web elements, The structure
was resized for strength in five FSD cycles resulting in a wéight reduction of
the idealized structure from 143,0 1b. to 61l.1 1b, Adequate convergence to &
fully stressed design was indicated by the weight change in the fifth redesign
cycle, which was only 0.1% of the total final weight., The final gage sizes of
the fully stressed structure are presented in Figure 12.1,

This initial application of the strength optimization program terminated
with the computation of a flexibility matrix for the dynamics model. Dynamics-
model mass data corresponding to the selected degrees of freedom were then calcu-
lated by applying realistic nonoptimum factors to the weight of the fully stressed
wing-box structure and also Ly separately accounting for the weight of the over-
hanging structure not included in the finite element model (see figure 11.2). The
resulting total wing weight was 187.3 1lbs. compared with 61.1 1lbs. for the ideal-
ized primary structure.

Flutter resizing was performed using all 100 elecents of the structures
model as flutter redesign variables. Flutter analyses performed in the flutter
optimization program utilized the doublet-lattice unsteady aerodynamics routine
ard the p-k solution procedure. The flutter-critical flight condition was desig-
nated as Mach 0.8, sea level.

The required flutter speed increment from the fully-stressed design point
was specified to be 30% with an acceptable flutter speed tand of 30-31%. It was
decided %o achieve the desired flutter speed in four combined strength/flutter
redesign cycles (user input). In all subsequent redesign cycles the mid-band
flutter speed (30.5%) was automatically selected as the target value. The design
steps, indicated in Figure 12.2, show convergence to the design optimum in eight
cycles, although a design very close to the optimum point was achieved after only
four cycles.

166

- s ———— - e s s et T Y e s @ -

. B e e —

- <~a.a<..-a R ‘xl:m“”«-"""“.“" -

» -«.rsw RN

® o ®




i'
5
i
!
Note: Gage sizes 3. inches. -020 . 020 _ .020 . -020 i ¢
/ / i ‘
{ ' .
N / / i 4
LOh2 .023 /& .020 7 .020 p i
iy /02 J& 020 g b
} y / ' / : 1 o
/ / e
020 ;s .020 020 ; 020 | i
/ /
/ / :
2 / 0 & 0k / 8 IS {
.0 .051 .0 .02
/ /
/ /
020 .020 / .020
/ °
f /
/ )
O b
/
/ » O
! ‘/ .020
i
¢
t ~
! 105 Mo gk /109 f i o
' ? / ? »
H ¢ i
i / P
i .030 020 , .020 :
N 7 «
. / / :
<o) / v p
g o6 // L7 fG 153 , .154 5 b
/ i
/ / 1 !
/ T
)
igure 12,1 Gage Sizes for Fully-Stressad Design
. Intermediate-Complexity Wing. .
{ : 167 ’
i
f 4
: 4

~ e o . , PR L The Aleaalals e ndid




"
e o s e e — D = e —31%
{ e G AT W G GRS Gvewn A Greie i Se— — —— -—-——-—--——-——30%
28
2L _| ,
!
i
'
r i
! i
) 20 ] i
? ;
i |
| f
Percent 16 \
Change
in
Flutter
Speed
12
8.,
4 ]
‘///////,Fully Stressed Design
T T T T T
2 L 6 8 10
Percent Change in Total Wing Weight
Figure 12,2 Results of Intermediate-Complexity-Wing
Redesign Study
168
“]
e - .- : S
b 2 ..
; o e . .8 R ] T N . X R )

@1

e mwg,v..— e

M-«w."y’w.?:.:m N o-.,—...»..—«
.

T T W R QIO B o g



Figure 12.3 shows the distribution of the total weight added to flutter-
critical elements in the final design. Also shown are the final zages of the
flutter-critical elements. It is interesting to no’e that the weight sdded to
the second bay inboard from the tip accounts for approximately half of the total
weight increment,

The level of uniformity of the final flutter-velocity derivatives of the
critical members may be observed in Figure 12.4, whirh also shows the original
values of these derivatives for the fully stressed design. The tabular sucmerv
of final design data (Table 12.1) indicates that only 0.6 lbs.of structural weight
was eliminated from the strength-critical structure in the course of redusig:.
Thus the resizing recuired for flutter had only a secondary effect on the struc-
ture's internal load distrimtion.

It should be noted that strength resizing may be op:iorally by-passed in
any resizing cycle when it is apparent that strength-flutter interaction is insig-

nificant. In this particular cslculation, strength resizing was sccomplished in
each cycle simply to demonstratz the total program capability.

12.2.2 All-Movable Stabilizer

All-movable stabilizer design load distributions were comruted for two
flight conditions: M = 0.8, sea level, o = 16.5°, and M = 1.3, 10,000 ft.,
o= 9.0°, and the preliminiry gages of the structures-model were resized for
strength in five FSD cycles. Since the chordwise and spanwise shear panel
elements in the stabilizer structures model simulated the stiffness properties
of an aluminum honeycomb core, thcy could not be logically resized for either
strength or flutter requirements. Consequently they were eliminated from the
redesign process by setting their maximum and minimum manufacturing gages equal
to their initial gages. The weight of the idealized structure was reduced by
15% (39.5 1bs.) in strength redesign. The initial strength-optimization program
analysis terminated with the computation of a flexibility matrix for the 92
degrees of freedom selected for the dynamics model (see Figure 11.4).

The dynemics model mass matrix was then calculated by applying non-
optimum factors to the weights of all the finite elements in the structures medel
ard then distributing thece weights to the selected dynamic points. This hand

calculation was performed by =2 weights engineer,
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TABLE 12.1 - FINAL DESIGN DATA FCR THE -4 @
INTERMEDIATE-COMPLEXITY WING AND ®
ALL-MOVABLE STABILIZER DEMONSTRATION § :
PROBLEMS i ®
|
WEIGHT IN POUNDS /-
. M‘
INTERMEDIATE- ALL-MOVABLE !
COMPLEXITY WING STABILIZER ~
Weight of finite element model -
preliminary sizing of members 143.0 259.7
- - - after FSD 61.1 220.2 o
Total weight of FSD structure
inecluding non-optimum factors 187.3 hab.s .
Total weight increment of Structure = 3.71 :
flutter~critical elements 14,76 »
from FSD (final design) Mass balance = 6,78
Total weight change of strength- -0.60 -0.24
critical elements from FSD ¢ ‘
Total weight increment from
FSD 14.16 10.25 . ®
!
:
Y
£
{
i
®
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A supersonic flutter-critical flight condition, Mach 1.6, 30,000 ft, was
selec&ed for flutter redesign with the design goal being a 25% increase in flutter H
speed. Two separate studies were then performed, one using both structural and k”
mass balance design variables and the other using only structural design variables.
In the former case, 3 1bs. of initial mass balance was arbitrarily added at each
of three selected mass balance locations (see Figure 12.5). Reasonably large

values of mass were selected to avoid the possibility, observed in previous
studies, of mass balance being ineffective for low initial values even though it ’ i
becomes effective for larger values.

The results of the combined strength/flutter redesign study, including mass
balance variables, showed that the mass balance at point B was increased veyond
its initial value whereas the masses at points A and C were progressively elimi-
5 nated. It was obvious, after the third flutter redesism cycle that the mass [ ]
balance at points A and C would be zero in the final design; it was decided there-
fore to override the existing program values and set them equal to zero at this

design point. This had the ef{ect of accelerating convergence to the design opti-
mum point.

It is seen in Figure 12.6 that a near optimum design with combined. structural \' "
and mess-balance variables was achieved after only five flutter redesign cycles.
The net weight increase to achieve a 25% increase in flutter speed was only 10.7
1bs or 2.58%. A further three redesign cycles beyond this point eliminated an
additional 0.5 1lbs., a relatively insignificant amount. The dfstribution of mass 1
balance and structural weight in the final design is presented in Figure 12.7. r
The standard deviation of flutter-velocity derivatives for the nine flutter criti-
cal elements in the final design was 0.33 knots/1b with a rean value of 17.7 knots/ !
1b. A summary of final design data is presented in Table 12.1 wherein it is noted %
that resizing for strength (a single cycle of FSD in each combined resizing cycle) '
resulted in a very small reduction in the weight of the strength-critical struc- »
ture.

The second all-movable stabilizer study, whichk used only structural de-
sign variables, indicated that the fiutter effectiveness ot the structural ele-
ments in the tip regicn was governed by their mass-balance effact, i.e.,, the
rinetic-energy-densitly contribution was dominant, FASTOP therefore resized these

elemerts to achieve a mass balance affect similar to that noted in the previous

.

stuly. Since the iritial values for the mass of these mirnirum gaze structural

.
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B Structural
Variables Only
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16 4 Mass Balance
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10
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Firure 12.6 Results of All-Movable Stabilizer Redesign Study
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elements was very small, it became apparent that convergence to the opcimum com-
bination of "mass balance" and structural stiffness would be slow {see Figure g
12.6). Consequently, redesign was terminated before convergence was achieved. T ’
This case illustrates a fact noted in previous studies using FASIOP, namely that
the convergence for flutter cases that are sasceptible to mass balance is much
enhanced if the user initiates redesign with arbitiury selections of mass balance
in potentially effective regions of the structure. Y

To provide a further base of reference for the two studies described atcvs,
a final analysis was performed using mass balance alone at the most effective
location indicated by FASTOP, i.e., the tip leading-edge. It was determined that
14.7 1b. of mass balance would be required to achieve the 25% flutter speed in-
’ crease, compared with 10.25 1b, for the combined redesign case (see Figure 12.6). P
!

12,2,3 Wing-with-Store

Conversion of the ceantilever.structure dynamics model of the wing-with- i
i store (see Figure 11,6) to a free-free model wa3 achieved by including beam

elcments to simulate the stiffness properties ol the fuselage in verticsel bending. » i'
The fuselage modelling is scinematically illustrated in Figure 12.8 in which it is oo
noted thut fifteen elements were used to represent the fuselage and ten hzam ele-
ment node poirnts were selected as dynamic node points for vibration anslysis,
Thus the modified vibration model had a totsl of 158 dynamic degrees of freedom
plus three plug ( rigid body) degrees of freedam,.

Tne preliminsry gages of the finite element structures model were rasized
for strength in five FSD cycles using two computed subsonic eerodynamic design
load distributions and one store inertial load condition. The weight of the re-
sulting fully-stressed structure was 1340 lbs., based on the finite element ideal-
i:ation, and 1921 1bs,, including non-optimum fectors and overhangirg structure,
The pylon-mounted store weighed 4500 lbs. with a pitch inertia of 8 x 106 1b. 1n2
about its center of gravity. The high store inertia created a coitical
flutter mechanism involving the first wing bending mode and the sture-pitch/wing-
torsion mode. A Mach 0.8, sea level lutter-critical flight condition was de-
signated for the redesign stud;. The objective was to sclieve a {lutter speed

~.v“ w-»-gxm«mv-'..._.,<. —_— .

turget of 660 knots equivalent airspeed from an initial computed value of 270 knots

T

for the fully stressed design. Wing posts ami fuselage b2am elerents were excluded
fron strength/flutter redesign resulting in a totwl of L33 structurel design p
variables for this study.
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Figure 12.8. Wing-with-Store Dynamic Model of Fuselage
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The forward beam of the pylon support structure, connecting iodeg 17¢ =4
17 (See Figure 11,5) had the hirhest flut‘er velocity derivative in the irnitisl
design (236 kiots’lb,) and the beem element which contirued the forward rear
ccnrection through the lower and upper wing covers (nodes 176-175) hed the
second higfhest derivative (97 hrets/ln.). The rear beam of the pylon, which
nad 2 flutter velocity derivative of ~L1,5 knots/1h,, was not resized dowrward
because of minimum gage constrasints, As redesign proceeded, the front and rear
bears of the pylon hecare enually flutter-effective, .2is qpanpe W8S 8CAGIDE" -
ied by a noticeaole chaige in the flutter mode shape, whica initielly involved
components of the first wing hending mode and the store-pitch/wing-torsion mode,
but later exhibited increasingly large components of the second wing bending
mode as the store piteh frequency was incressed. A net reduction irn structurel
weight was achieved in the first combined flutter-strength redesign cycle
(Figure 12.9) due to the fact that the initial fully stressed design was not
fully converged (i.e., the stress ratios were not unity) end the subsequert
strength redesign further reduced the weight of the structure in regions which
were ineffective for flutter, Thus, the net weight reduction of 0.95 1b, in
the first redesign cycle comprised an addition of 0.3k 1b, for flutter speed

improvement and a reduction of 1.29 1b, in fhe strength-critical regions of
the structure,

Redesign for flutter appeared to be directed toward incressing the fre-
quency of the store pitch mode and no structural elementc were resized outbourd
of the wing store station, Resizing of wing structural elements inboard of the
store station involved spsr webs and the rib webs between the wing-to-pylon
connection points (Figure 12,10). The resizing in the vicinity of the front

wing-to-fuselage connection point accounted for a relatively smell proportion

of the overall weight increase, One of the most interesting results of this

study was that the shear rigidity of th2 forward and rear spars was shown to
be a more significant contributor to the oversll store pitch stiffness thax:
the wing covers,

Convergence to the final design point was schieved in eight comhined

flutter-strength redesign cycles (Figure 12,9), although a design verv close

to optinum was achieved after six cycles. The flutter spced terset wes achieved

for only 8,42 1bs inerease in weight, The distribution of this weight is tsb-
ulated below:
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Figure 12.9 Results of Wing-with-Store Redesign Study
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:1%;
3
{"j' Total weight increase for flutter-criticel elerents = 10.35 1b, ‘
(weight increase for pylon alone = €.55 1h.) 2
Weight removed from strength-criticel structure = 1.93 1b. »
Total weight increase from FSD atarting point » 8,42 1b, .
G§
though the net reduction in weight of the strength-critical structure was
relatively insignificant, a redistribution of cover material wes noted in the -
inboard wing sections. Consequently strength resizing {1 FSD cycle) was a‘ﬁ,.

scccrmplished in all but two of the redesign cycles, In vhe other two cycles,
SOF was simply used to recompute a revised flexibility matrix for vihration
mode calculations,

A second redesign study was initiated ucing beth structural design variables v
and three mass balance desiyn variables located at dynamic nodes 6, 9, ard 55 b
(see Figure 11.6), Twenty pounds of mass belance was arbitrarily sdded st each
dynamic node before initisting redesign. The flutter specd cf the fully stressed
design ircressed from 270 krots to 290 knots as a resuls of this mass esddition.
It was noted that the initisl flutter-velocity derivatives of sll masses were
very close to zero, Consequently they were eliminated in tne subsequent re- b

design aralysis.
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